Our Program and Focus Areas

Landscape science for ecosystem solutions

SFEI’s Resilient Landscapes Program develops innovative ecosystem restoration and management strategies to re-establish and sustain key eco¬logical functions and services. These strategies are helping integrate natural and human infrastructure to create systems that are more adaptive to climate change and other stressors. The Program has several focus areas:

  • SFEI’s pioneering Historical Ecology studies provide a new foundation for understanding the inherent potential in local landscapes, helping identify and prioritize land¬scape restoration and management options.
  • Integrative Geomorphology investigates geomorphic processes in watersheds and tidal environments to help develop resilient landscape management approaches that consider climate change and other key ecosystem drivers.
  • Through Landscape Ecology, we bring advanced spatial analysis to incorporate ecological patterns and processes to landscape designs at multiple scales.
  • Our work in Wetland Science creates tools for designing, tracking, and visualizing changing conditions in our valued aquatic resources.
  • Resilient landscapes are also cultural landscapes. SFEI strives to bring the perspectives of non-governmental organizations, governmental agencies, and indigenous peoples into the broader conversation about ecosystem stewardship.
  • These diverse tools are applied though SFEI’s Center for Resilient Landscapes. The CRL is turning the San Francisco Bay Area into a world leader in utilization of landscape data to help restore and sustain natural ecosystem benefits. The Center brings together new understanding of how California landscapes work with advanced tools to assess and track landscape change in a creative setting that links scientists,resource managers, and the public. Drawing on the diversity and complexity of the native California landscape, we can reshape our neighborhoods, cities, and surrounding lands to be ecologically abundant, resilient landscapes.

We recognize that resilient landscapes are ultimately cultural landscapes. We therefore strive to bring the perspec­tives of non-governmental organizations as well as governmental agencies into the broader conversation about ecosys­tem stewardship. We are expanding the Program to include Traditional Ecological Knowledge, especially the natural resource management practices of indigenous people, to further broaden the discussion of what is possible and appropriate to achieve through collaborative landscape design and management.

For additional information, please contact Program Director Robin Grossinger, Program Director Letitia Grenier, or Program Manager Ruth Askevold.

Historical Ecology synthesizes diverse historical records to learn how habitats were distributed and ecological functions were maintained within the native California landscape. Understanding how streams, wetlands, and woodlands were organized along physical gradients helps scientists and managers develop new strategies for more integrated and functional landscape management. T-sheet_in_the_field_6pt75in_wide_96dpi.jpg

Understanding the Changing Landscape

Given the dramatic changes to California landscapes during the past two centuries, we often have only rudimentary understanding of the systems we seek to protect and enhance. In fact, there is a growing recognition that restoration efforts have often misinterpreted earlier conditions, resulting in missed opportunities and, in some cases, failed projects. However, the development of accurate, reliable, and broadly-supported pictures of historical condition and change can help correctly identify the causes of current challenges, and reveal previously unrecognized management options. Historical reconstructions also educate and engage the public imagination, increasing public will for local and regional landscape stewardship.

History and Restoration in a Changing Climate

Researchers are increasingly recognizing that restoration and conservation strategies have often been misguided (and unsuccessful) because of a lack of understanding of historical conditions (e.g. Hamilton 1997, Kondolf et al. 2001, Foster and Motzkin 2003, Merritts and Walter 2008). This is particularly true in California, where our cultural memory is short and we have tended to impose concepts appropriate to more humid regions to our Mediterranean and semiarid landscapes (which will become only more so).

In fact, the natural climatic diversity of the region provides a framework for understanding the adaptation of local ecosystems across a surprisingly broad climatic gradient. Historical ecology reveals a landscape well-designed for extreme seasonal and interannual climatic variability and controlled by fundamental geologic controls that remain intact -- the "dry side of the ecological palette" that has been largely overlooked in conservation planning.

History shows how human efforts have tended to ignore these Mediterranean characteristics and reshaped the landscape according to different, imported conceptions. But it also reveals successful early adaptations (e.g., native land management, towns in the shade of oak groves, early dry farming and oyster farming, creeks as "sediment hoses") that can inspire creative, locally-calibrated management strategies. Climate change increases the need to understand and manage ecosystem functions adaptively along broad topographic, hydrological, and climatic gradients within the context of evolving cultural landscapes, rather than focusing on narrow, project-specific targets.

Applying Historical Ecology

SFEI's historical ecology studies have contributed to numerous restoration projects in the Bay Area and coastal California. Projects are carried out in collaboration with local partners and with a team of regional and local science advisers, with results made broadly available through website, publication, and presentation. SFEI's innovative approaches have been featured in New Scientist Magazine, Landscape Journal, The Living Landscape: An Ecological Approach to Landscape Planning, the McGraw-Hill Encyclopedia of Science and Technology, and the Historical Ecology Handbook, as well as general audience science programs such as KQED’s QUEST and the Saving the Bay documentary.

More About Historical Ecology

  • Egan, D and EA Howell. 2005. The Historical Ecology Handbook: A Restorationist's Guide to Reference Ecosystems. Island Press. Washington DC.
  • Montgomery, DR, 2008. Dreams of Natural Streams. Science 319(5861):291-292.
  • Sauer , CO. 1930. Historical Geography and the Western Frontier. In Land and Life: A Selection from the Writings of Carl Ortwin Sauer. UC Press 1969.
  • Swetnam, TW, CD Allen, and JL Betancourt. 1999. Applied Historical Ecology: Using the Past to Manage for the Future. Ecological Applications 9(4):1189-1206.

The Historical Ecology Team

Landscape Ecology focuses on landscape planning for wildlife, with an emphasis on producing practical scientific information to aid resource managers in making decisions that will optimize benefits for wildlife. Our goal is to provide input that will improve how restoration projects and planning efforts take into account and plan for the needs of wild animals and plants across the regional landscape and over time. Recent projects include landscape analyses of the ecological connectivity of habitats in eastern Marin County and development of wetland mercury biosentinel species to aid tidal marsh restoration planning. more >

Manager: Letitia Grenier, Ph.D.

The Wetland Science Focus Area provides scientific and technological support for coordinated, collaborative, cost-effective wetland planning, management, assessment, and reporting across government policies and programs. Working with other Focus Areas at SFEI, and with many outside partners, we help all interests develop place-based goals for wetland protection by developing and implementing tools, such as Historical Ecology,  the California Aquatic Resource Inventory (CARI), and the California Rapid Assessment Method for wetlands (CRAM) to understand how the abundance, diversity, and condition of wetlands have changed due to nature and people, and to explore alternative ways to protect and restore wetlands for the future.

What are Wetlands?

Wetlands are landscape features with aquatic and terrestrial characteristics. They form the shores of aquatic features, like lakes and rivers and tidal bays, but they also exist by themselves, surrounded entirely by uplands. They have their own unique flora and fauna. In fact, wetland can be identified by indicative plants adapted to saturated soils. There are many kinds of wetlands in the western US with colorful common names: ponds, bogs, fens, swamps, marshes, vernal pools, hog wallows, wet meadows, playas, bottomlands, seeps, springs, swales, and sloughs – just to name a few. They have technical names too: marine, estuarine, palustrine, riverine, depressional, slope, flat.

Why are Wetlands Important?

There are many names for wetlands because they take many forms and do many things for people. Some of the common services of wetlands are: water quality improvement, flood control, shoreline protection, groundwater supply, fish and wildlife support, recreation, food production, beautification, and climate moderation. Numerous species of birds and mammals rely on wetlands for food, water, and shelter, especially while migrating and breeding. More than half of the threatened and endangered species rely directly or indirectly on wetlands for their survival. Wetlands can receive, store, and release water, and therefore strongly influence the hydrological cycler and water availability. They improve water quality by intercepting surface runoff and removing or retaining inorganic nutrients, processing organic wastes, and reducing suspended sediments. Wetlands store carbon as organic soil instead of releasing it to the atmosphere as carbon dioxide, a greenhouse gas affecting global climate change.

Protecting Wetlands

Because of their many valuable services to people, wetlands are protected by federal, state, and local laws and policies intended to reverse historical trends in wetland loss. There are many agencies involved in protecting wetlands by regulating how they are used, providing tax incentives to protect privately owned wetlands, and to acquire wetlands as parks, wildlife refuges, and open space. The federal and state agencies most directly responsible for wetlands have recently begun developing watershed approaches to comprehensive wetland protection.  

SFEI's Wetland Science Focus Area is involved in over a dozen projects that support the California Wetland and Riparian Area Protection Policy, providing science support and technical tools for wetland monitoring, tracking, and reporting on the distribution, abundance and condition of wetlands accross the state.  More Information.

Wetland Science Focus Area Team


The Integrative Geomorphology Focus Area investigates geomorphic processes in watersheds and tidal environments to help develop resilient landscape management approaches that consider climate change and other key ecosystem drivers. By working closely with the Hydrology, Landscape Ecology, Watershed Loadings, and Historical Ecology Focus Areas, the Integrative Geomorphology Focus Area provides an understanding of historical and contemporary fluvial and tidal physical processes and landscape evolution at a range of spatial and temporal scales. This understanding is essential for helping mangers determine the magnitude of landscape sensitivity to natural and anthropogenic influences, identify short-term and long-term management priorities, and develop sustainable solutions for key habitat creation and maintenance under projected future conditions.

Topics currently under investigation by the Integrative Geomorphology Focus Area include the following:

  • Regional assessment of watershed geomorphic and ecological processes in San Francisco Bay tributaries for past, present, and projected future conditions
  • Investigating the role of watershed sediment delivery on marsh survival under a rising sea level around San Francisco Bay
  • Historical evolution of the San Francisco Bay shoreline and assessment of future shoreline resilience
  • Regional assessment of climate change impacts on the fluvial-tidal transition location for San Francisco Bay tributaries
  • Developing a new approach to flood control channel design at the Bay interface that supports critical marsh habitat restoration and creation

Manager: Scott Dusterhoff


Realizing the Full Potential of California Ecosystems

SFEI has received initial funding from the San Francisco-based Seed Fund to establish the Center for Resilient Landscapes. The Center will promote creative and integrative responses to the challenge of climate change by drawing on SFEI’s deep understanding of the diversity, complexity, and functions of California’s native landscapes.


What is a “resilient landscape”?

1_Oaks.jpgAn ecologically resilient landscape is able to absorb and accommodate stressors and variability (such as increased temperatures or more frequent floods) while still maintaining its fundamental structure and function – that is, it is able to both persist and adapt in the face of change. In the recent past, California ecosystems were often resilient to these and other stressors. In contrast, many of today’s ecosystems have been highly homogenized and fragmented, making them less resilient and more sensitive to environmental and other perturbations.



What is the goal of the Center for Resilient Landscapes?

4_hand_map.jpgAdaptation to climate change in the 21st century requires redesigning our landscapes as resilient, interconnected systems that have the ability to adapt over time. The diversity and complexity of the native California landscape offers many of the solutions to this challenge, providing a broad palette of strategies for enhancing the ecological function and resilience of our landscapes. Revealed by innovative techniques such as historical ecology, this understanding of how our landscapes functioned in the recent past helps reveal their underlying, often surprising, potential. The Center will use historical ecology, along with other tools, to identify the inherent potential in our existing landscapes and create visions and strategies for achieving that potential.



Who is the Center for Resilient Landscapes?

3_RL_Zone.jpgThe Center will be led by SFEI senior scientist Robin Grossinger, and will draw on SFEI staff from the Resilient Landscapes Program and other programs across the Institute. In addition, the Center will bring together an interdisciplinary group of scientists, engineers, and designers from California and beyond to advise and guide activities.




What will the Center for Resilient Landscapes do?

2_NAIP and Tsheets Redwood Point_v1.jpgWe anticipate the Center will lead a variety of research, advisory, and educational activities, such as: guiding restoration design, hosting forums on relevant issues, developing visualization tools to communicate key findings, and publishing research that synthesizes findings across California watersheds.




Where can I learn more?

For more information, please contact Robin Grossinger.


Projects Related to the Resilient Landscapes Program

Santa Clara Valley Water District Priority D5 Project's Watershed Condition Assessments (2010 to 2018)

SFEI and the Santa Clara Valley Water District's (Valley Water) Priority D-5 Project have been conducting baseline ecological condition assessments in Santa Clara County, CA to characterize the distribution and abundance of stream and wetlands in five major watersheds, and assess the overall ecological condition of streams in the watersheds based on the California Rapic Assessment Method for streams (CRAM).  The surveys employ the state's recommended Wetland and Riparian Area Monitoring Plan's aproach that includes the use of GIS-base maps of aquatice resources (BAARI), and spatially-balanced ambient stream surveys using CRAM.

Russian River Watershed Projects at the San Francisco Estuary Institute

Our projects in the Russian River Watershed help us to understand our past, understand our present, and envision our future. Learn more about what SFEI is doing in partnership with others to advance our scientific understanding of this valuable landscape.

Contaminant Data Download and Display (CD3)

Contaminant Data Display and Download Tool or CD3  is an innovative visualization tool for accessing water quality data for the San Francisco Bay-Delta and northern montane regions. It is the primary tool for accessing and downloading the San Francisco Bay Regional Monitoring Program’s (RMP) long-term dataset and other project data stored in SFEI's Regional Data Center (RDC).

Delta Landscapes Project

The Delta Landscapes Project, which began in 2012 and will run through 2016, has developed a body of work to inform landscape-scale restoration of the Sacramento-San Joaquin Delta ecosystem.


California's EcoAtlas provides access to information for effective wetland management. EcoAtlas is a set of tools for generating, assembling, storing, visualizing, sharing, and reporting environmental data and information. The tools can be used individually or together, and they can be adjusted or tuned to meet the specific needs of environmental planners, regulators, managers, scientists, and educators. The maps and tools can be used to create a complete picture of aquatic resources in the landscape by integrating stream and wetland maps, restoration information, and monitoring results with land use, transportation, and other information important to the state’s wetlands.

Resilient Silicon Valley

Drawing on resilience science, regional data, and local expertise, we will develop the vision and tools that will allow stakeholders in the region ensure that local actions contribute toward the creation of a high-functioning and resilient Silicon Valley ecosystem.

Photo Credits: Micha Salomon (L), Dee Shea Himes (R)

Healthy Watersheds Resilient Baylands

Through the Healthy Watersheds Resilient Baylands project, SFEI and sixteen partner organizations is developing multi-benefit tools to enhance climate change resilience in San Francisco Bay. Healthy Watersheds Resilient Baylands has three major components: Making Nature’s City: a Science-based Framework for Building Urban Biodiversity, Tidal Wetlands Restoration and Implementation Projects.

Tijuana River Valley Historical Ecology Investigation

The Tijuana River Valley Historical Ecology Investigation synthesized hundreds of historical maps, photographs, and texts to reconstruct the the ecological, hydrological, and geomorphic conditions of the valley prior to major European-American landscape modification.

San Francisco Bay Shoreline Adaptation Atlas: Working with Nature to Plan for Sea Level Rise

In partnership with SPUR, The Operational Landscape Units project, funded by the SF Bay Regional Water Quality Control Board, will create a new way of looking at the Bay.

Upper Penitencia Creek: Historical Ecology Assessment

Upper Penitencia Creek, on the eastern side of Santa Clara Valley, has locally significant potential for stream restoration and anadromous fish recovery. The Upper Penitencia Creek Historical Ecology Assessment documents aspects of Upper Penitencia Creek's hydrogeomorphology and riparian ecology prior to major Euro-American modification. It describes the historical (ca. 1850) channel alignment, dry season hydrology, and riparian corridor of the creek as interpreted from early maps, textual records, and photographs.

Publications related to the Resilient Landscapes Program

The Institute has collectively produced more than 1300 reports, articles, and other publications over the course of its 24-year existence. The following list represents those publications associated with this individual program and its focus areas.

Year of Publication: 2020

Baumgarten S, Grossinger R, Bazo M, Benjamin M. Re-Oaking North Bay. Richmond, CA: San Francisco Estuary Institute; 2020 . Report No.: 947.  (20.51 MB) (1.83 MB)
Richey A, Dusterhoff SD, Baumgarten SA, Clark E, Benjamin M, Shaw S, et al.. Restoration Vision for the Laguna de Santa Rosa. Richmond, CA: SFEI; 2020 . Report No.: 983.  (29.19 MB)

Year of Publication: 2019

Spotswood E, Grossinger R, Hagerty S, Bazo M, Benjamin M, Beller E, et al.. Making Nature's City. Richmond, CA: San Francisco Estuary Institute; 2019 . Report No.: 947.  (10.41 MB) (33.4 MB)
Hagerty S, Spotswood E, McKnight K, Grossinger RM. Urban Ecological Planning Guide for Santa Clara Valley. Richmond, CA: San Francisco Estuary Institute; 2019 . Report No.: 941.  (42.6 MB)

Year of Publication: 2018

Baumgarten S, Clark E, Dusterhoff S, Grossinger RM, Askevold RA. Petaluma Valley Historical Hydrology and Ecology Study. Richmond, CA: San Francisco Estuary Institute; 2018 . Report No.: 861.  (121.7 MB) (43.68 MB)
McKnight K, Dusterhoff SD, Grossinger RM, Askevold RA. Resilient Landscape Vision for the Calabazas Creek, San Tomas Aquino Creek, and Pond A8 Area: Bayland-Creek Reconnection Opportunities. Richmond, CA: San Francisco Estuary Institute-Aquatic Science Center; 2018 p. 40. Report No.: 870.  (68.63 MB) (20.14 MB)
Richey A, Dusterhoff SD, McKnight K, Salomon M, Hagerty S, Askevold RA, et al.. Resilient Landscape Vision for Upper Penitencia Creek. Richmond, CA: San Francisco Estuary Institute - Aquatic Science Center; 2018 . Report No.: 894.  (67.6 MB) (11.75 MB)

Where Our Resilient Landscapes Program Works