Export 170 results:
Filters: First Letter Of Title is E  [Clear All Filters]
2022
Wang, M.; Kinyua, J.; Jiang, T.; Sedlak, M.; McKee, L. J. .; Fadness, R.; Sutton, R.; Park, J. - S. 2022. Suspect Screening and Chemical Profile Analysis of Storm-Water Runoff Following 2017 Wildfires in Northern California. Environmental Toxicology and Chemistry . SFEI Contribution No. 1089.

The combustion of structures and household materials as well as firefighting during wildfires lead to releases of potentially hazardous chemicals directly into the landscape. Subsequent storm-water runoff events can transport wildfire-related contaminants to downstream receiving waters, where they may pose water quality concerns. To evaluate the environmental hazards of northern California fires on the types of contaminants in storm water discharging to San Francisco Bay and the coastal marine environment, we analyzed storm water collected after the northern California wildfires (October 2017) using a nontargeted analytical (NTA) approach. Liquid chromatography quadrupole time-of-flight mass spectrometric analysis was completed on storm-water samples (n = 20) collected from Napa County (impacted by the Atlas and Nuns fires), the city of Santa Rosa, and Sonoma County (Nuns and Tubbs fires) during storm events that occurred in November 2017 and January 2018. The NTA approach enabled us to establish profiles of contaminants based on peak intensities and chemical categories found in the storm-water samples and to prioritize significant chemicals within these profiles possibly attributed to the wildfire. The results demonstrated the presence of a wide range of contaminants in the storm water, including surfactants, per- and polyfluoroalkyl substances, and chemicals from consumer and personal care products. Homologs of polyethylene glycol were found to be the major contributor to the contaminants, followed by other widely used surfactants. Nonylphenol ethoxylates, typically used as surfactants, were detected and were much higher in samples collected after Storm Event 1 relative to Storm Event 2. The present study provides a comprehensive approach for examining wildfire-impacted storm-water contamination of related contaminants, of which we found many with potential ecological risk. Environ Toxicol Chem 2022;00:1–14. © 2022 SETAC

2019
Yee, D.; Gilbreath, A. N.; McKee, L. J. .; Davis, J. A. 2019. Conceptual Model to Support PCB Management and Monitoring in the San Leandro Bay Priority Margin Unit - Final Report. SFEI Contribution No. 928. San Francisco Estuary Institute: Richmond, CA.

The goal of RMP PCB special studies over the next few years is to inform the review and possible revision of the PCB TMDL and the reissuance of the Municipal Regional Permit for Stormwater, both of which are tentatively scheduled to occur in 2020. Conceptual model development for a set of four representative priority margin units will provide a foundation for establishing an effective and efficient monitoring plan to track responses to load reductions, and will also help guide planning of management actions. The Emeryville Crescent was the first PMU to be studied in 2015-2016. The San Leandro Bay PMU is second (2016-2018), Steinberger Slough in San Carlos is third (2018), and Richmond Harbor will be fourth (2018-2019).

This document is Phase Three of a report on the conceptual model for San Leandro Bay. A Phase One report (Yee et al. 2017) presented analyses of watershed loading, initial retention, and long-term fate, including results of sediment sampling in 2016. A Phase Two data report (Davis et al. 2017) documented the methods, quality assurance, and all of the results of the 2016 field study. This Phase Three report is the final report that incorporates all of the results of the 2016 field study, and includes additional discussion of the potential influence of contaminated sites in the
watershed, the results of passive sampling by Stanford researchers and a comparative analysis of long-term fate in San Leandro Bay and the Emeryville Crescent, a section on bioaccumulation, and a concluding section with answers to the management questions that were the impetus for the work.

 (12.81 MB)
Wu, J.; Kauhanen, P.; Hunt, J. A.; Senn, D.; Hale, T.; McKee, L. J. . 2019. Optimal Selection and Placement of Green Infrastructure in Urban Watersheds for PCB Control. Journal of Sustainable Water in the Built Environment 5 (2) . SFEI Contribution No. 729.

San Francisco Bay and its watersheds are polluted by legacy polychlorinated biphenyls (PCBs), resulting in the establishment of a total maximum daily load (TDML) that requires a 90% PCB load reduction from municipal stormwater. Green infrastructure (GI) is a multibenefit solution for stormwater management, potentially addressing the TMDL objectives, but planning and implementing GI cost-effectively to achieve management goals remains a challenge and requires an integrated watershed approach. This study used the nondominated sorting genetic algorithm (NSGA-II) coupled with the Stormwater Management Model (SWMM) to find near-optimal combinations of GIs that maximize PCB load reduction and minimize total relative cost at a watershed scale. The selection and placement of three locally favored GI types (bioretention, infiltration trench, and permeable pavement) were analyzed based on their cost and effectiveness. The results show that between optimal solutions and nonoptimal solutions, the effectiveness in load reduction could vary as much as 30% and the difference in total relative cost could be well over $100 million. Sensitivity analysis of both GI costs and sizing criteria suggest that the assumptions made regarding these parameters greatly influenced the optimal solutions. 

If you register for access to the journal, then you may download the article for free through July 31, 2019.

DOI: 10.1061/JSWBAY.0000876

 (1.48 MB)
2018
Hale, T.; Sim, L.; McKee, L. J. 2018. GreenPlan-IT Tracker.

This technical memo describes the purpose, functions, and structure associated with the newest addition to the GreenPlan-IT Toolset, the GreenPlan-IT Tracker. It also shares the opportunities for further enhancement and how the tool can operate in concert with existing resources. Furthermore, this memo describes a licensing plan that would permit municipalities to use the tool in an ongoing way that scales to their needs. The memo concludes with a provisional roadmap for the development of future features and technical details describing the tool’s platform and data structures.

 (1.43 MB)
2017
Dusterhoff, S.; Pearce, S.; McKee, L. J. .; Doehring, C.; Beagle, J.; McKnight, K.; Grossinger, R.; Askevold, R. A. 2017. Changing Channels: Regional Information for Developing Multi-benefit Flood Control Channels at the Bay Interface. Flood Control 2.0. SFEI Contribution No. 801. San Francisco Estuary Institute: Richmond, CA.

Over the past 200 years, many of the channels that drain to San Francisco Bay have been modified for land reclamation and flood management. The local agencies that oversee these channels are seeking new management approaches that provide multiple benefits and promote landscape resilience. This includes channel redesign to improve natural sediment transport to downstream bayland habitats and beneficial re-use of dredged sediment for building and sustaining baylands as sea level continues to rise under a changing climate. Flood Control 2.0 is a regional project that was created to help develop innovative approaches for integrating habitat improvement and resilience into flood risk management at the Bay interface. Through a series of technical, economic, and regulatory analyses, the project addresses some of the major elements associated with multi-benefit channel design and management at the Bay interface and provides critical information that can be used by the management and restoration communities to develop long-term solutions that benefit people and wildlife.

This Flood Control 2.0 report provides a regional analysis of morphologic change and sediment dynamics in flood control channels at the Bay interface, and multi-benefit management concepts aimed at bringing habitat restoration into flood risk management. The findings presented here are built on a synthesis of historical and contemporary data that included input from Flood Control 2.0 project scientists, project partners, and science advisors. The results and recommendations, summarized below, will help operationalize many of the recommendations put forth in the Baylands Ecosystem Habitat Goals Science Update (Goals Project 2015) and support better alignment of management and restoration communities on multi-benefit bayland management approaches.

 (62.69 MB) (23.02 MB)
 (14.6 MB)
 (3.08 MB)
 (4.01 MB)
Wu, J.; Gilbreath, A.; McKee, L. J. 2017. Regional Watershed Spreadsheet Model (RWSM): Year 6 Progress Report. SFEI Contribution No. 811. San Francisco Estuary Institute: Richmond, CA.
 (1.79 MB)
2016
 (4.27 MB)
 (2.58 MB)
 (2.71 MB)
Trowbridge, P. R.; Davis, J. A.; Mumley, T.; Taberski, K.; Feger, N.; Valiela, L.; Ervin, J.; Arsem, N.; Olivieri, A.; Carroll, P.; et al. 2016. The Regional Monitoring Program for Water Quality in San Francisco Bay, California, USA: Science in support of managing water quality. Regional Studies in Marine Science 4.

The Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) is a novel partnership between regulatory agencies and the regulated community to provide the scientific foundation to manage water quality in the largest Pacific estuary in the Americas. The RMP monitors water quality, sediment quality and bioaccumulation of priority pollutants in fish, bivalves and birds. To improve monitoring measurements or the interpretation of data, the RMP also regularly funds special studies. The success of the RMP stems from collaborative governance, clear objectives, and long-term institutional and monetary commitments. Over the past 22 years, high quality data and special studies from the RMP have guided dozens of important decisions about Bay water quality management. Moreover, the governing structure and the collaborative nature of the RMP have created an environment that allowed it to stay relevant as new issues emerged. With diverse participation, a foundation in scientific principles and a continual commitment to adaptation, the RMP is a model water quality monitoring program. This paper describes the characteristics of the RMP that have allowed it to grow and adapt over two decades and some of the ways in which it has influenced water quality management decisions for this important ecosystem.

 (1.82 MB)
 (902.89 KB)
 (3.93 MB)
2015
 (651.3 KB) (1.59 MB)
Gilbreath, A. N.; McKee, L. J. . 2015. Concentrations and loads of PCBs, dioxins, PAHs, PBDEs, OC pesticides and pyrethroids during storm and low flow conditions in a small urban semi-arid watershed. Science of the Total Environment 526, 251-261 . SFEI Contribution No. 650.

Urban runoff has been identified in water quality policy documents for San Francisco Bay as a large and potentially controllable source of pollutants. In response, concentrations of suspended sediments and a range of trace organic pollutants were intensively measured in dry weather and storm flow runoff from a 100% urban watershed. Flow in this highly urban watershed responded very quickly to rainfall and varied widely resulting in rapid changes of turbidity, suspended sediments and pollutant concentrations. Concentrations of each organic pollutant class were within similar ranges reported in other studies of urban runoff, however comparison was limited for several of the pollutants given information scarcity. Consistently among PCBs, PBDEs, and PAHs, the more hydrophobic congeners were transported in larger proportions during storm flows relative to low flows. Loads for Water Years 2007-2010 were estimated using regression with turbidity during the monitored months and a flow weighted mean concentration for unmonitored dry season months. More than 91% of the loads for every pollutant measured were transported during storm events, along with 87% of the total discharge. While this dataset fills an important local data gap for highly urban watersheds of San Francisco Bay, the methods, the uniqueness of the analyte list, and the resulting interpretations have applicability for managing pollutant loads in urban watersheds in other parts of the world.

David, N.; Gluchowski, D. C.; Leatherbarrow, J. E.; Yee, D.; McKee, L. J. . 2015. Estimation of Contaminant Loads from the Sacramento-San Joaquin River Delta to San Francisco Bay. Water Environment Research 87 (4), 334-346.

Contaminant concentrations from the Sacramento-San Joaquin River watershed were determined in water samples mainly during flood flows in an ongoing effort to describe contaminant loads entering San Francisco Bay, CA, USA. Calculated PCB and total mercury loads during the 6-year observation period ranged between 3.9 and 19 kg/yr and 61 and 410 kg/yr, respectively. Long-term average PCB loads were estimated at 7.7 kg/yr and total mercury loads were estimated at 200 kg/yr. Also monitored were PAHs, PBDEs (two years of data), and dioxins/furans (one year of data) with average loads of 392, 11, and 0.15/0.014 (OCDD/OCDF) kg/yr, respectively. Organochlorine pesticide loads were estimated at 9.9 kg/yr (DDT), 1.6 kg/yr (chlordane), and 2.2 kg/yr (dieldrin). Selenium loads were estimated at 16 300 kg/yr. With the exception of selenium, all average contaminant loads described in the present study were close to or below regulatory load allocations established for North San Francisco Bay.

 (31.54 MB) (4.68 MB) (62.4 KB)
 (5.26 MB)
 (650.69 KB)
 (61.71 MB)
2014
 (9.5 MB)
 (778.81 KB) (1.17 MB)
 (11.99 MB)
 (1.91 MB)
 (267.06 KB)
 (1.87 MB)
 (770.95 KB) (882.14 KB)
 (718.98 KB) (1.02 MB)
 (38.4 MB) (22.9 MB)
2013
McKee, L. J. .; Lewicki, M.; Schoellhamer, D. H.; Ganju, N. K. 2013. Comparison of sediment supply to San Francisco Bay from watersheds draining the Bay Area and the Central Valley of California. Marine Geology Special Issue: A multi-discipline approach for understanding sediment transport and geomorphic evolution in an estuarine-coastal system.
 (2.33 MB)
Barnard, P. L.; Schoellhamer, D. H.; Jaffe, B. E.; McKee, L. J. . 2013. Sediment transport in the San Francisco Bay Coastal System: An overview. Marine Geology Special Issue: A multi-discipline approach for understanding sediment transport and geomorphic evolution in an estuarine-coastal system.
2012
 (1.25 MB)
 (3.42 MB) (5.85 MB)
 (3.9 MB)
 (1.26 MB)
 (2.79 MB)
 (1.4 MB)
 (1.03 MB)
 (1.32 MB)
 (4.62 MB)
 (939.36 KB)
2011
 (14.26 MB)
 (11.37 MB)
 (1.26 MB)
 (1.29 MB)
 (1.04 MB)
 (6.86 MB)
 (2.5 MB)
2010
 (5.09 MB)
 (3.34 MB)
 (1.23 MB)
 (1.23 MB)
 (4.14 MB)
 (1.02 MB)
 (2.13 MB)
 (1.6 MB)
 (1.89 MB)
 (3.76 MB)
 (3.76 MB)
Yee, D.; McKee, L. J. .; Oram, J. J. 2010. A Regional Mass Balance of Methylmercury in San Francisco Bay, California, USA. Environmental Toxicology and Chemistry . SFEI Contribution No. 619.
 (306.73 KB) (275.24 KB)
2009
 (2.68 MB)
Pearce, S.; McKee, L. J. . 2009. Alameda Creek Bulk Sediment Study Technical Memorandum. San Francisco Estuary Institute: Oakland,Ca.
 (2.68 MB)
 (6.77 MB)
Bigelow, P.; Pearce, S.; McKee, L. J. . 2009. Dry Creek Watershed Sediment Source Reconnaissance Technical Memorandum. SFEI Contribution No. 595. San Francisco Estuary Institute: Oakland,Ca.
 (3.06 MB) (27.1 MB)
David, N.; McKee, L. J. . 2009. Going Organic Project. SFEI Contribution No. 588. San Francisco Estuary Institute: Oakland, Ca.
 (3.09 MB)
 (12.67 MB)
 (11.54 MB)
 (8.15 MB)
 (4.64 MB)
 (725.12 KB)
 (1.26 MB)
McKee, L. J. .; Feng, A.; Sommers, C.; Looker, R. 2009. RMP Small Tributaries Loading Strategy. San Francisco Estuary Institute: Richmond, CA.
 (566.89 KB)
 (30.68 MB)
 (983.2 KB)
2008
 (12.45 MB)
 (181.72 KB)
 (1.53 MB)
 (708.37 KB)
McKee, L. J. . 2008. Review of sediment gauging studies in Alameda Creek Watershed. SFEI Contribution No. 571. San Francisco Estuary Institute.
Bigelow, P.; Pearce, S.; McKee, L. J. .; Gilbreath, A. N. 2008. A Sediment Budget for Two Reaches of Alameda Creek. SFEI Contribution No. 550. San Francisco Estuary Institute.
 (26.45 MB)
Oram, J. J.; McKee, L. J. .; Davis, J. A.; Sedlak, M.; Yee, D. 2008. Sources, Pathways and Loadings Workgroup: Five-Year Workplan (2008-12). SFEI Contribution No. 567. San Francisco Estuary Institute: Oakland.
 (16.66 MB)