OCTOBER 5, 2010

A PRESENTATION of the Regional Monitoring Program for Water Quality in the San Francisco Estuary

RECENT ADVANCES IN BAY AREA STORMWATER SCIENCE

LESTER McKEE, SAN FRANCISCO ESTUARY INSTITUTE
Take home messages

• Sediment information is improving and remains the basis for estimation and tracking contaminants

• Sediment grainsize influences the quality of the sediment resource and our ability to manage contamination

• Monitoring takes different tools and effort and each watershed scale

• Mercury is found on small particles and in dissolved phase under lower flow conditions

• Source control show promise for PCBs (and Hg) - treatment control may be more suitable for PCBs
The need for information

- The Bay is listed as impaired

- “Create a functional connection between beneficial uses of the Bay and efforts to identify, eliminate, and prevent sources of pollution”

- Cu/Ni, Hg Total Maximum Daily Loads (TMDL) clean up plans began to be developed in the late 90s

- 1999 – The Sources Pathways and Loading Workgroup established
Some things don’t change

• Atmospheric Deposition Pilot Study
 – Relatively small magnitude established

• Wastewater treatment quantification
 – Improved analyte list and detection limits
 – Relatively small magnitude established

• Water Budget for San Francisco Bay

<table>
<thead>
<tr>
<th></th>
<th>Volume (Mm3)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Rivers</td>
<td>24900</td>
<td>92</td>
</tr>
<tr>
<td>Small Tributaries</td>
<td>918</td>
<td>3.4</td>
</tr>
<tr>
<td>Municipal Wastewater</td>
<td>800</td>
<td>3.0</td>
</tr>
<tr>
<td>Rainfall</td>
<td>381</td>
<td>1.4</td>
</tr>
<tr>
<td>Industrial Wastewater</td>
<td>36</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Some knowledge has really changed

- Sediment budget
- Polychlorinated Biphenyl (PCB) budget
- Mercury budget
- Information about sources and treatment options improving
Sediment knowledge prior to year 2000

- Smith, 1965 based on data from Porterfield et al., 1961
- Krone, 1966

1.4 M metric t
Central Valley suspended sediment loads
(McKee et al., 2002; 2006; David et al., 2009; RMP Pulse, 2010)

Average = 1 M metric t
Spatially resolved suspended sediment loads estimates

(Lewicki and McKee, 2009)
Useful information?

- Estimates of relative particle concentrations
Loads from small tributaries by Bay segment

<table>
<thead>
<tr>
<th>RMP Bay Segment</th>
<th>Load (t/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers</td>
<td>27,353</td>
</tr>
<tr>
<td>Suisun Bay</td>
<td>203,453</td>
</tr>
<tr>
<td>Carquinez Strait</td>
<td>25,693</td>
</tr>
<tr>
<td>San Pablo Bay</td>
<td>281,789</td>
</tr>
<tr>
<td>Central Bay</td>
<td>246,170</td>
</tr>
<tr>
<td>South Bay</td>
<td>270,202</td>
</tr>
<tr>
<td>Lower South Bay</td>
<td>214,940</td>
</tr>
<tr>
<td>Total</td>
<td>1,269,606</td>
</tr>
</tbody>
</table>

Note “Rivers” is the name of the northeastern most RMP Bay segment and is not referring to input from the Sacramento or San Joaquin River.
Summary of allochthonous suspended sediment loads

- Predictions of Ray Krone seem to have become reality

- Bay sediment supply has switched from **Central Valley dominated** to local small tributary dominated

1960 Average

3 M t
76%
Summary of allochthonous suspended sediment loads

- Predictions of Ray Krone seem to have become reality
- Bay sediment supply has switched from Central Valley dominated to local small tributary dominated

2000 Average
1 M t
44%
Temporally resolved suspended sediment loads (Million metric t)

Key
- **Sacramento River at Mallard Island**
- **Local Small Tributaries draining the 9-county Bay Area**
Estimated suspended sediment supply

- **Large Rivers**
- **Small tributaries**

RMP monitoring (18 years)

Suspended sediment supply (Million metric t)

Water Year

- 1970
- 1972
- 1974
- 1976
- 1978
- 1980
- 1982
- 1984
- 1986
- 1988
- 1990
- 1992
- 1994
- 1996
- 1998
- 2000
- 2002
- 2004
- 2006
- 2008
Sediment grainsize

Implications for

- Source control
- Treatment control
- Turbidity as a surrogate
- Trapping in reservoirs and flood channels
Sediment as a resource

Alameda flood control channel example

• D50: mostly fine – medium sand
 – Some samples >50% gravel

• 14% is <62.5 micron
Monitoring contaminant loads
Where have we been monitoring?

Sacramento River at Mallard Island
154,000 km²

Gellert Park Recreational Facility
0.016 km²
Challenges of scale in monitoring?

- Gellert Park Rec Facility (12 mins)
- Sacramento River At Mallard Island (3-4 days)

Graph showing response time vs. watershed area.
Sacramento River at Mallard Island
Zone 4 Line A in Hayward
North Richmond Pump Station
Gellert Park recreational facility, Daly City
How do we scale up from local to regional?

- PCB TMDL – simple climate and area scaling
- Future – calibrated modeling

\[
\text{Runoff area} \times \text{EMC} = \text{Load}
\]
Loading information continues to improve - PCBs

2000
- 76 kg
- Large rivers 54%
- Small tributaries 43%

2010
- 53 kg
- Large rivers 21%
- Small tributaries 47%
- In-Bay erosion 27%
Loading information continues to improve - Hg

- **2000**
 - 1,334 kg
 - Large rivers 46%
 - Small tributaries 9%
 - Guadalupe 4%

- **2010**
 - 1068 kg
 - Large rivers 20%
 - Small tributaries 18%
 - Guadalupe 13%
Mercury speciation - Guadalupe

- HgD(%) = 15%
- MeHgT(%) = 2%
Mercury speciation – Urban Zone 4 Line A

- HgD(%) 59%
- MeHgT(%) 15%
Mercury particle size relations

Total Mercury (mg/kg)

Grain Size (mm)
Knowledge for managers:

Tracking and abating - the PCB example
Tracking and abating: What did we use PCBs for?

<table>
<thead>
<tr>
<th>Category</th>
<th>Metric t used in the Bay Area</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Completely" closed systems</td>
<td>7,400 (60%)</td>
<td>Large transformers, fluorescent light ballasts</td>
</tr>
<tr>
<td>Nominally closed systems</td>
<td>1,200 (10%)</td>
<td>Vacuum pumps, consumer appliances</td>
</tr>
<tr>
<td>Open-ended</td>
<td>3,700 (30%)</td>
<td>Waxes, caulking compounds, plasticizers</td>
</tr>
</tbody>
</table>
Tracking and abating: What did we use PCBs for?

- Old factory transformers
- PG&E facilities
- Household appliances
- Floor polish
- Caulking
- Fluorescent light ballast
Tracking and abating: How can we identify PCBs at their source?

<table>
<thead>
<tr>
<th>Trade name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arochlor</td>
<td>Monsanto</td>
</tr>
<tr>
<td>Asbestol</td>
<td></td>
</tr>
<tr>
<td>Askarel</td>
<td></td>
</tr>
<tr>
<td>Bakota</td>
<td></td>
</tr>
<tr>
<td>Chlorextol</td>
<td>Allis-Chalmers</td>
</tr>
<tr>
<td>Hydol</td>
<td></td>
</tr>
<tr>
<td>Inerteen</td>
<td>Westinghouse</td>
</tr>
<tr>
<td>N0-Flamol</td>
<td></td>
</tr>
<tr>
<td>Pyranol</td>
<td>General Electric</td>
</tr>
<tr>
<td>Saf-T-Khol</td>
<td></td>
</tr>
<tr>
<td>Therminol</td>
<td></td>
</tr>
</tbody>
</table>
Tracking and abating: PCBs still in **legal** use

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>City</th>
<th>Number of transformers</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USS-POSCO Industries</td>
<td>900 Loveridge RD.</td>
<td>Pittsburg</td>
<td>105</td>
<td>203802</td>
</tr>
<tr>
<td>Quebecor Printing San Jose, Inc.</td>
<td>696 East Trimble Road</td>
<td>San Jose</td>
<td>5</td>
<td>32094</td>
</tr>
<tr>
<td>NASA</td>
<td>Ames Research Center</td>
<td>Moffett Field</td>
<td>17</td>
<td>7052</td>
</tr>
<tr>
<td>Gaylord Container Corp</td>
<td>2301 Wilbur Ave.</td>
<td>Antioch</td>
<td>2</td>
<td>6078</td>
</tr>
<tr>
<td>General Chemical</td>
<td>510 Nichols Road</td>
<td>Pittsburg</td>
<td>3</td>
<td>4800</td>
</tr>
<tr>
<td>Rhodia Inc.</td>
<td>100 Mococo Road</td>
<td>Martinez</td>
<td>3</td>
<td>2807</td>
</tr>
<tr>
<td>NASA Ames Research Center</td>
<td>M/S 218-1; Building N229, Room 156</td>
<td>Moffett Field</td>
<td>2</td>
<td>1916</td>
</tr>
<tr>
<td>Pacific Custom Materials, Inc.</td>
<td>9000 Carquinez Scenic Dr.</td>
<td>Port Costa</td>
<td>2</td>
<td>1590</td>
</tr>
<tr>
<td>DOT Maritime Administration Suisun Bay Reser</td>
<td>2595 Lake Herman Rd.</td>
<td>Benicia</td>
<td>3</td>
<td>1048</td>
</tr>
<tr>
<td>Hollywood Park Land Company, LLC</td>
<td>4 Embarcadero Center, Suite 3300; Grandstand Building at Tunnel #4 Inside C-Vault Electrical Room</td>
<td>San Francisco</td>
<td>1</td>
<td>927</td>
</tr>
<tr>
<td>Hollywood Park Land Company, LLC</td>
<td>1200 Park Place, Suite 200; Grandstand Building at Tunnel #4 Inside C-Vault Electrical Room</td>
<td>San Mateo</td>
<td>1</td>
<td>927</td>
</tr>
<tr>
<td>Macaulay Foundry, Inc.</td>
<td>811 Carleton St.</td>
<td>Berkley</td>
<td>1</td>
<td>913</td>
</tr>
</tbody>
</table>
Tracking and abating: Mapping sediment / soil contamination

<table>
<thead>
<tr>
<th>Number of sites in patch</th>
<th>PCB concentration (mg/kg)</th>
<th>Patch description (centroid x-streets)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Minimum</td>
</tr>
<tr>
<td>6</td>
<td>3.45</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>3.37</td>
<td>0.00</td>
</tr>
<tr>
<td>99</td>
<td>2.70</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>1.72</td>
<td>0.15</td>
</tr>
<tr>
<td>11</td>
<td>1.49</td>
<td>0.00</td>
</tr>
<tr>
<td>40</td>
<td>1.37</td>
<td>0.00</td>
</tr>
<tr>
<td>42</td>
<td>0.89</td>
<td>0.00</td>
</tr>
<tr>
<td>49</td>
<td>0.86</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.80</td>
<td>0.35</td>
</tr>
<tr>
<td>54</td>
<td>0.74</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>0.65</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>0.44</td>
<td>0.03</td>
</tr>
<tr>
<td>8</td>
<td>0.41</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.36</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>0.29</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Tracking and abating: How do PCBs to get into stormwater or wastewater?
Tracking and abating: Institutional controls?

- Changes to laws
- Clean up of illicit waste dumps
- Industrial inspection and education programs
- Clean up of contaminated sites
 - Enforcement actions
 - Volunteer
- Building demolition and remodeling
 - Public buildings
 - Private

- Caulking
- Light ballast
- Wall coverings ceiling tiles
- Floor wax
- Floor finish
- Heavy electric wiring
- Lift motors
- Paint
- Appliances
Tracking and abating: Better treatment control design

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 min</td>
<td>3%</td>
<td>12%</td>
<td>7%</td>
</tr>
<tr>
<td><20 min</td>
<td>10%</td>
<td>28%</td>
<td>17%</td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 min</td>
<td>14%</td>
<td>46%</td>
<td>31%</td>
</tr>
<tr>
<td><20 min</td>
<td>27%</td>
<td>72%</td>
<td>53%</td>
</tr>
</tbody>
</table>
Take home messages

• Sediment information is improving and remains the basis for estimation and tracking contaminants

• Sediment grainsize influences the quality of the sediment resource and our ability to manage contamination

• Monitoring takes different tools and effort and each watershed scale

• Hg is found on small particles and in dissolved phase under lower flow conditions

• Source control shows promise for PCBs (and Hg) - treatment control may be more suitable for PCBs
Next steps

2011
1. Watershed loads reconnaissance study
 - Pick 16 watersheds
 - Distributed amongst the county programs
 - Old industrial areas
 - Imperviousness
2. Complete a literature review and EMC based spreadsheet model

2012
3. Resume loads monitoring a selected watersheds
4. Further EMC model development
Acknowledgements

• **Funding**
 – Regional Monitoring Program for Water Quality in SF Bay (RMP)
 – Prop 13 Stormwater Non-point Source Program
 – Santa Clara Valley Water District (SCVWD)
 – Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)
 – Alameda County Flood Control and Water Conservation District

• **Collaborations**
 – Bay Area Stormwater Management Agencies Association (BASMAA)
 – Geosyntec (Oakland office)

• **Contributing SFEI authors**
 – Don Yee
 – Nicole David
 – Jon Leatherbarrow (late)
 – Alicia Gilbreath
 – Michelle Lent
 – Kat Ridolfi
 – Data management group