OCTOBER 5, 2010

A PRESENTATION of the Regional Monitoring Program for Water Quality in the San Francisco Estuary

RECENT ADVANCES IN BAY AREA STORMWATER SCIENCE

LESTER McKEE, SAN FRANCISCO ESTUARY INSTITUTE

Take home messages

- Sediment information is improving and remains the basis for estimation and tracking contaminants
- Sediment grainsize influences the quality of the sediment resource and our ability to manage contamination
- Monitoring takes different tools and effort and each watershed scale
- Mercury is found on small particles and in dissolved phase under lower flow conditions
- Source control show promise for PCBs (and Hg) treatment control may be more suitable for PCBs

The need for information

- The Bay is listed as impaired
- "Create a functional connection between beneficial uses of the Bay and efforts to identify, eliminate, and prevent sources of pollution"
- Cu/Ni, Hg Total Maximum Daily Loads (TMDL) clean up plans began to be developed in the late 90s
- 1999 The Sources Pathways and Loading Workgroup established

- Atmospheric Deposition Pilot Study
 - Relatively small magnitude established

- Wastewater treatment quantification
 - Improved analyte list and detection limits
 - Relatively small magnitude established

Water Budget for San Francisco Bay

	Volume (Mm³) (%)		
Large Rivers	24900	92	
Small Tributaries	918	3.4	
Municipal Wastewater	800	3.0	
Rainfall	381	1.4	
Industrial Wastewater	36	0.13	

Some knowledge has really changed

- Sediment budget
- Polychlorinated Biphenyl (PCB) budget
- Mercury budget
- Information about sources and treatment options improving

Sediment knowledge prior to year 2000

Central Valley suspended sediment loads

(McKee et al., 2002; 2006; David et al., 2009; RMP Pulse, 2010)

Spatially resolved suspended sediment loads estimates

(Lewicki and McKee, 2009)

Useful information?

 Estimates of relative particle concentrations

Loads from small tributaries by Bay segment

RMP Bay Segment	Load (t/year)
Rivers	27,353
Suisun Bay	203,453
Carquinez Strait	25,693
San Pablo Bay	281,789
Central Bay	246,170
South Bay	270,202
Lower South Bay	214,940
<u>Total</u>	1,269,606

^{*}Note "Rivers" is the name of the northeastern most RMP Bay segment and is not referring to input from the Sacramento or San Joaquin River.

Summary of allochthonous suspended sediment loads

- Predictions of Ray Krone seem to have become reality
- Bay sediment supply has switched from <u>Central Valley</u> dominated to local small tributary dominated

Summary of allochthonous suspended sediment loads

- Predictions of Ray Krone seem to have become reality
- Bay sediment supply has switched from Central Valley dominated to local small tributary dominated

Temporally resolved suspended sediment loads

(Million metric t)

Estimated suspended sediment supply

Sediment grainsize

Sediment as a resource

Alameda flood control channel example

- D50: mostly fine medium sand
 - Some samples >50% gravel

• 14% is <62.5 micron

Monitoring contaminant loads

Where have we been monitoring?

Sacramento River at Mallard Island

154,000 km²

Gellert Park Recreational
Facility

0.016 km²

Challenges of scale in monitoring?

Sacramento River at Mallard Island

Guadalupe River at Hwy 101

Zone 4 Line A in Hayward

North Richmond Pump Station

Gellert Park recreational facility, Daly City

How do we scale up from local to regional?

- PCB TMDL simple climate and area scaling
- Future calibrated modeling

Loading information continues to improve - PCBs

- 2000
 - 76 kg
 - Large rivers 54%
 - Small tributaries 43%
- 2010
 - -53 kg
 - Large rivers 21%
 - Small tributaries 47%
 - In-Bay erosion 27%

Loading information continues to improve - Hg

13%

- 2000
 - -1,334 kg
 - Large rivers 46%
 - Small tributaries 9%
 - Guadalupe 4%
- 2010
 - 1068 kg
 - Large rivers 20%
 - Small tributaries 18%
 - Guadalupe 13%

Mercury speciation - Guadalupe

Suspended Sediment (mg/L)

Mercury speciation – Urban Zone 4 Line A

Mercury particle size relations

Knowledge for managers:

Tracking and abating - the PCB example

Tracking and abating: What did we use PCBs for?

(60%)

1,200

(10%)

3,700

(30%)

closed systems

closed systems

Open-ended

Nominally

		A toxic e special har U.S. Enviso	PCBs [hapsterined Bipsen(s)] (hapsterined Bipsen(s)] (dring and disposal in accordance of immerital Protection Agency Regular) (in-Exp Disposal Information norths)	ons
	Metric t used in the	In case of Costs Also Costs Tet. No	the Processes information north the nearest U.S. EPA Office socident or spill, call trill free the U. Guard National Response Center 802-424-8602	
	Bay Area	Examples		
"Completely"	7,400	Large transformers, fluorescent		

light ballasts

appliances

plasticizers

Vacuum pumps, consumer

Waxes, caulking compounds,

Tracking and abating: What did we use PCBs for?

Old factory transformers

Caulking

Floor polish

Household appliances

Tracking and abating: How can we identify PCBs at their

source?

Photo courtesy of Insh Ellassor

Trade name	Company
Arochlor	Monsanto
Asbestol	
Askarel	
Bakota	
Chlorextol	Allis-Chalmers
Hydol	
Inerteen	Westinghouse
N0-Flamol	
Pyranol	General Electric
Saf-T-Khol	
Therminol	

Tracking and abating: PCBs still in **legal** use

Company	Address	City	Number of transformers	Mass (kg)
USS-POSCO Industries	900 Loveridge RD.	Pittsburg	105	203802
Quebecor Printing San Jose, Inc.	696 East Trimble Road	San Jose	5	32094
NASA	Ames Research Center	Moffett Field	17	7052
Gaylord Container Corp	2301 Wilbur Ave.	Antioch	2	6078
General Chemical	510 Nichols Road	Pittsburg	3	4800
Rhodia Inc.	100 Mococo Road	Martinez	3	2807
NASA Ames Research Center	M/S 218-1; Building N229, Room 156	Moffett Field	2	1916
Pacific Custom Materials, Inc.	9000 Carquinez Scenic Dr.	Port Costa	2	1590
DOT Maritime Administration Suisun Bay Reser	2595 Lake Herman Rd.	Benicia	3	1048
Hollywood Park Land Company, LLC	4 Embarcadero Center, Suite 3300; Grandstand Building at Tunnel #4 Inside C-Vault Electrical Room	San Francisco	1	927
Hollywood Park Land Company, LLC	1200 Park Place, Suite 200; Grandstand Building at Tunnel #4 Inside C-Vault Electrical Room	San Mateo	1	927
Macaulay Foundry, Inc.	811 Carleton St.	Berkley	1	913

Tracking and abating: Mapping sediment / soil contamination

Number of sites	PCB cond	entration (m	g/kg)	Patch description (centroid x-streets)
in patch	Average	Minimum	Maximum	Taken description (continue a success)
6	3.45	0.00	20.29	Quarry Rd & Industrial Blvd, San Carlos
5	3.37	0.00	16.81	El Camino Real & Collins Ave, Colma
99	2.70	0.00	93.41	Helen St & Peralta St, Oakland
9	1.72	0.15	7.65	ML King Jr Way & 1st St, Oakland
11	1.49	0.00	7.65	Embarcadero Way & Oak St, Oakland
40	1.37	0.00	26.75	Leo Ave & S 7th St, San Jose
42	0.89	0.00	20.29	Montgomery St & Industrial Rd, San Carlos
49	0.86	0.00	11.52	Washington St & Bayport Ave, San Carlos
2	0.80	0.35	1.26	Michigan St & Couch St, Vallejo
54	0.74	0.00	2.79	S 4th St & Cutting Blvd, Richmond
14	0.65	0.00	2.26	S Marina Way & Hall Ave, Richmond
12	0.44	0.03	1.16	26th St & Minnesota St, San Francisco
8	0.41	0.00	1.38	E California Ave & Morse Ave, Sunnyvale
4	0.36	0.00	1.27	E 8th St & 7th Ave, Oakland
10	0.29	0.00	0.92	Mare Island Way & Maine St, Vallejo
			-	E 8th St & 7th Ave, Oakland

Tracking and abating: How do PCBs to get into stormwater or wastewater?

Tracking and abating: Institutional controls?

SEE MANUAL TREETING

- Changes to laws
- Clean up of illicit waste dumps
- Industrial inspection and education programs
- Clean up of contaminated sites
 - Enforcement actions
 - Volunteer
- Building demolition and remodeling
 - Public buildings
 - Private

- Caulking
- Light ballast
- Wall coverings ceiling tiles
- Floor wax
- Floor finish
- Heavy electric wiring
- Lift motors
- Paint
- Appliances

Tracking and abating: Better treatment control design

Z4-205 (29ng/L)

0%

Z4-201

(17ng/L)

Z4-203

(30ng/L)

Z4-204

(23g/L)

	Minimum	Maximum	Average
Hg			
<2 min	3%	12%	7%
<20 min	10%	28%	17%
PCB			
<2 min	14%	46%	31%
<20 min	27%	72%	53%

Take home messages

- Sediment information is improving and remains the basis for estimation and tracking contaminants
- Sediment grainsize influences the quality of the sediment resource and our ability to manage contamination
- Monitoring takes different tools and effort and each watershed scale
- Hg is found on small particles and in dissolved phase under lower flow conditions
- Source control shows promise for PCBs (and Hg) treatment control may be more suitable for PCBs

Next steps

2011

- 1. Watershed loads reconnaissance study
- Pick 16 watersheds
 - Distributed amongst the county programs
 - Old industrial areas
 - Imperviousness
- 2. Complete a literature review and EMC based spreadsheet model

2012

- 3. Resume loads monitoring a selected watersheds
- 4. Further EMC model development

Acknowledgements

SEE ANNUAL MIRETING

Funding

- Regional Monitoring Program for Water Quality in SF Bay (RMP)
- Prop 13 Stormwater Non-point Source Program
- Santa Clara Valley Water District (SCVWD)
- Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)
- Alameda County Flood Control and Water Conservation District

Collaborations

- Bay Area Stormwater Management Agencies Association (BASMAA)
- Geosyntec (Oakland office)

Contributing SFEI authors

- Don Yee
- Nicole David
- Jon Leatherbarrow (late)
- Alicia Gilbreath
- Michelle Lent
- Kat Ridolfi
- Data management group