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REPORT SUMMARY 

 

The purpose of this document is to summarize efforts to evaluate the optimization of 

sampling methods for pollutant loads and trend monitoring at Guadalupe River (GR) and 

Zone 4 Line A (Z4LA). This report presents a technical evaluation of sampling methods, 

load estimators, and strategies for storm selection. The sampling optimization focused on 

Hg, PCBs, and suspended sediments (SS) since these are the high management priorities 

in San Francisco Bay. The information summarized here will facilitate further discussion 

to develop appropriate study designs to address MRP questions and priorities at these and 

future sites. The focus of this study was to evaluate sampling designs for obtaining 

annual loads estimates.  The study included two components: 

 Comparison of the accuracy and precision of a variety of stormwater monitoring 

designs and mathematical equations (estimators) for determining annual pollutant 

loads; and 

 Determining the power and sample size needed to detect declining trends in Hg 

and PCBs in the next 10 - 40 years. 

The MRP default design is the automated sampling of four random storms using a 

composite sample method. The estimated range in bias (- 50 – 13%) and standard error 

(4.3 – 6.5%) for the default MRP method was among the highest of the designs 

evaluated. Alternatives were explored such as increasing the number of samples and 

storms to six or 10 storms using a composite sampling method. Although sampling of 10 

storms would provide better precision than four or six storms, a design with 10 storms 

would likely exceed budgetary limits. A six storm sampling strategy was simulated to 

include the first flush and largest storm. This design produced a similar range in bias (-16 

– 31%) and standard error (1.4 – 3.6%) to the sampling of four storms (-13 – 57% and 2.2 

– 5.0%, respectively). It is likely that the small improvement in precision with six storms 

would not warrant the extra on-going cost for this design, but inclusion of first flush and 

largest storms may warrant consideration. Automated sampling of two, four, or six 

storms using a discrete sampling method was also explored. The total number of samples 

was assumed to remain the same in each scenario, thus the range in bias (-7 – 4%) and 

standard error (0.1 – 1.4%) of these designs did not change. The best configuration was 

four storms (3 samples per storm).  

The addition of turbidity was also explored using the turbidity surrogate regression 

estimator for the loads calculation method. This method produced the highest accuracy 

and least bias of all the alternative designs. To use regression on the turbidity surrogate 

records for estimating annual loads, at least 10 but ideally 16 samples per year should be 

collected at each site. Given results from the discrete among-storm evaluations, it is 

likely that scenarios that include first flush and one of the largest storms of the year 

would provide more robust loads estimates than random sampling alone when applying 

the turbidity surrogate method.  

Power for detecting trends appeared to be possible with just 10 samples collected per 

year, based on a preliminary scenario in which the samples were randomly selected and 

did not confirm to any of the tested sampling designs. 
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INTRODUCTION 
 

Worldwide, coastal ecosystems adjacent to large urban, industrial and agricultural 

centers are subject to contamination, toxicity, and subsequent demise of wildlife and 

fisheries (Lauenstein and Daskalakis 1998, Linkov et al. 2002, Trimble 2003, Newton 

and Mudge 2005). In response, environmental laws in many countries are being 

developed and implemented to slowdown or reverse the process of contamination and 

even restore lost ecosystem attributes. In many cases, estimation of ecosystem-scale mass 

loads emanating from sources is one of the first data requirements needed to develop a 

plan of action (e.g., Godfrey et al. 1995, Schiff and Bay 2003,  Balcom et al. 2004). San 

Francisco Bay is one such ecosystem that has been highly impacted by a history of urban, 

industrial, agriculture and mining land uses spanning about 150 years (Flegal et al. 2007). 

Approximately seven million people currently live in the nine counties bordering the 

Bay, and runoff and contaminants from mining legacies, urban areas, and agriculture 

drain to the Bay from about 37% of California (McKee et al. 2006a, David et al. 2009). 

Today, mercury (Hg) and polychlorinated biphenyls (PCBs) are considered the greatest 

threat to human and wildlife uses of the Bay (Conaway et al. 2007, Davis et al. 2007, 

Flegal et al. 2007, Yee et al. in review). However, there are also concerns about a number 

of emerging contaminants (Oros et al. 2003, Hoenicke et al. 2007, She et al. 2008). 

In San Francisco Bay, urban runoff is considered one of the largest controllable 

sources of pollutant discharge. Total maximum daily loads (TMDL) reports written by 

the local Regional Water Quality Control Board (Water Board), summarize current 

estimates of loads from the main sources and pathways (urban and industrial wastewater, 

urban stormwater, Central Valley rivers, atmospheric deposition). The TMDL reports 

also argue for studies linking loads and toxic effects to beneficial uses, and provide loads 

allocations for each source and pathway (SFRWQCB 2006, 2008). The allocations are 

particularly stringent for urban stormwater and allow for 82 kg of Hg and 2 kg of PCBs 

with the objective of improving water quality in the Bay to desirable standards in 20 

years (2028 for Hg and 2030 for PCBs). These represent estimated reductions of 50% and 

90% over the present load estimates of 160 kg of Hg and 20 kg of PCBs, respectively. 

However, these load estimates remain uncertain, since measurements have only been 

made in a few of over two hundred tributaries (SFEI 2010). 

The Regional Monitoring Program for Water Quality in San Francisco Bay 

(RMP), through its Sources, Pathways, and Loadings Workgroup (SPLWG), has been 

conducting tributary loading studies for nine years. The focus has been to provide 

information on sediment and pollutant transport processes in urban watersheds around the 

Bay (McKee et al. 2004, McKee et al. 2005, McKee et al. 2006b, Davis et al. 2007, Oram 

et al. 2008, David et al. 2009, McKee and Gilbreath 2009). The primary objective of 

these studies has been to achieve precise and unbiased estimates of loads of particle-

associated pollutants-of-concern (particularly, Hg, PCBs, and suspended sediments). 

Most of the sampling effort has been focused on three locations: Mallard Island on the 

Sacramento River; Guadalupe River in San Jose; and the Zone 4 Line A flood control 

channel in Hayward. At all three study locations, a turbidity surrogate methodology has 

been employed, as it has been reported to be an appropriate and cost-effective method for 

accurate and unbiased particulate loads calculation (Grayson 1996, Wall et al. 2005). The 

tributary loading studies have provided valuable information for the development of the 
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San Francisco Bay and Guadalupe River Hg TMDLs (Austin 2006, SFRWQCB 2006), 

and the Municipal Regional Stormwater NPDES Permit (MRP) (SFRWQCB 2009). 

The TMDLs and the MRP call for the Bay Area Stormwater Management 

Agencies Association (BASMAA) to improve loads information. In response, the RMP 

developed a small tributaries loading strategy (STLS) to guide the development of loads 

information over the next five years and to ensure coordination between the RMP and 

BASMAA. The STLS and Provision C.8.e. of the MRP aim to answer the following 

management questions: 

1. Identify which Bay tributaries (including stormwater conveyances) contribute 

most to Bay impairment from pollutants of concern, 

2. Quantify annual loads or concentrations of pollutants of concern from tributaries 

to the Bay, 

3. Quantify the decadal-scale loading or concentration trends of pollutants of 

concern from small tributaries to the Bay, and  

4. Quantify the projected impacts of management actions (including control 

measures) on tributaries and identify where these management actions should be 

implemented to have the greatest beneficial impact. 

All of these questions require some level of information on the concentrations and mass 

loads in tributaries but the focus here is on optimization of study design for questions 2 

and 3.   

There are a number of sampling methods and corresponding mathematical 

calculation methods available for developing mass loading information. The optimal 

balance of sampling frequency within and among storm events is important to achieve 

precise, accurate, and cost effective loads measurements. Several methods, such as 

random and time-interval based sampling designs, have already been evaluated in other 

studies and essentially rejected as ineffective methods for evaluating tools towards our 

management questions (Walling 1985, 1988, Leecaster et al. 2002, Ma et al. 2009), and 

thus need not be evaluated further. Other calculation methods, including flow-weighted 

means, have been tested previously in southern California (Leecaster et al. 2002, Ma et 

al. 2009), and additional methods (turbidity surrogate, simple means, and linear 

interpolation) were examined in this study.  

The focus of this study was to evaluate sampling designs for obtaining annual loads 

estimates.  The study included two components: 

1. Comparison of the accuracy, precision, and cost of a variety of stormwater 

monitoring designs and mathematical equations (estimators) for determining annual 

pollutant loads; and 

2. Determining the power and sample size needed to detect declining trends in Hg 

and PCBs in the next 10 - 40 years. 

High quality loading data from local watersheds collected by the SPLWG and RMP 

provided a resource to evaluate potential future monitoring approaches. A variety of 

sampling and mathematical loads calculation methods were simulated by statistically 

subsampling the existing high temporal resolution empirical data sets.  Combining 

empirical data with simulation methods to test and optimize loading measurements has 

been carried out in numerous studies before (e.g., Walling 1985, Walling 1988, Leecaster 

et al. 2002, Ma et al. 2009). This study focused on sampling optimization for Hg, PCBs, 

and suspended sediments (SS) since these are the high management priorities in San 
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Francisco Bay, and suspended sediment concentration and load is an important vector for 

transport of sediment-associated pollutants. However, the findings are likely relevant for 

other particulate substances in similar sized watersheds.   

 

 

METHODS 

 

Three years of urban runoff data from the Guadalupe River (GR) and Zone 4 Line 

A (Z4LA) monitoring stations in San Francisco Bay, California were statistically 

analyzed in this study. GR is located near San Jose, the largest city in the San Francisco 

Bay Area. Its watershed is the fourth largest in the Bay Area (about 500 km
2
) and is a 

network of mostly natural channels that have been modified by impoundments and flood 

control engineering. The monitoring station operated by the SPLWG developed through 

collaboration with the US Geological Survey (USGS) (station number 11169025) is 

upstream from tidal influence, but resides downstream from five main reservoirs, the City 

of San Jose, and the majority of flood control channels. The typical flood hydrograph 

produced by heavy rainfall passes through this watershed over a period of about 12-24 

hours but larger and later season floods may last for several days. The free flowing area 

downstream from reservoirs is 236 km
2
, of which approximately 80% is urbanized 

landscape. In addition, this area also drains the Quicksilver County Park, formerly the 

New Almaden Mining District, which, since 1849, has produced 6% of the total Hg 

worldwide (McKee, L., unpublished data) and is a known source of Hg to San Francisco 

Bay.  

In contrast, the monitoring station in Z4LA, located in Hayward, drains a 

relatively small 4.47 km
2
 watershed of completely urbanized landscape with over 38% 

industrial land use. Historically, there was no creek draining this area of the Bay margin. 

The flood channel of Zone 4 Line A is entirely engineered with approximately one-third 

open to the air and two-thirds underground culverts and storm drains. The monitoring 

station resides approximately 1.7 km from the Bay and upstream from tidal influence. 

There are no reservoirs in this watershed and rain passes largely unabated through the 

network of flood channels in minutes to hours.  

Though an excellent data set is also available for the Mallard Island on the 

Sacramento River for a range of trace contaminants (David et al. 2009), these data were 

not included in the present study.  There were two primary reasons for this: 1. the system 

is not representative of typical small tributaries to be monitored in the MRP, due to 

extreme size of the watershed (covering two-thirds of the land area of California); 2. time 

and resource limitations precluded the detailed examination necessary to evaluate optimal 

sampling design for this system.  Since the system is much larger than GR, Z4LA, and 

others watersheds previously studied (e.g., Leecaster et al. 2002, May and Sivakumar 

2009), and has considerably higher water volume and longer flood wave travel times, an 

optimal sampling strategy for this system is likely quite different. Performing a similar 

exercise for larger watersheds such as represented by our sampling station on the 

Sacramento River at Mallard Island remains a data gap in the published literature.     

 Three water years (WY) of data that spanned a range in climatic conditions (and 

thus a range in wet weather discharge and pollutant concentrations) were chosen for each 

watershed. A water year begins October 1
st
 each year and ends September 30

th
 and is 
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designated by the end date. At GR, during WYs 2003 – 2005, the peak discharge was 172 

m
3
/s on December 16

th
, 2002 in WY 2003 (Table 1). In comparison, WYs 2004 and 2005 

had relatively lower maximum discharge and pollutant concentrations. At Z4LA, three 

water years of data were also available, although not all years have complete records due 

to permitting issues and upstream construction. During WYs 2007 - 2009, Z4LA wet 

season discharge varied from 4.7 – 6.7 m
3
/s. WY 2008 exhibited relatively higher peak 

wet season discharge than the other two years, but this was predominated by many small 

storms.  

 

“Best Estimate” Loads Calculations 

 

Statistical simulations of sampling designs were compared to existing “best 

estimates”. The “best estimate” of annual loads (based on wet season data) was 

determined for each watershed based on the mathematical combination of estimated 

pollutant concentration and discharge volume. Hg, PCBs, and suspended sediment (SS) 

loads were examined. At both study locations, a turbidity surrogate regression (TSR) 

methodology has been used. Specifically, turbidity was monitored at short time intervals 

(15 minutes or less) and a statistical regression developed with a subset of water samples 

analyzed for suspended sediment concentration.  This turbidity: SSC regression was 

combined with the continuous turbidity measurements to generate a time-continuous SSC 

record. 

Additional depth integrated water samples (10-40 samples per year) were 

collected manually during high-flow events (storms), and analyzed for trace 

contaminants. Clean hands protocols were used. All analytical results were certified by 

the RMP data management and quality assurance plan (Lowe et al. 1999). Subsequently, 

during well sampled floods, linear interpolation was used to estimate concentrations 

between data points which were then combined with short interval flow measurements to 

determine loads. During storm periods when no sampling was conducted or during dry 

weather flows, regression relationships were determined between turbidity and each 

pollutant and used to calculate time-continuous estimates of contaminant concentration 

(turbidity surrogate regression or TSR). These estimates were then combined with 

discharge measurements to calculate loads. These combined methods were used to 

determine the “best estimate” of annual pollutant concentrations and loads to these 

watersheds over the years. It has been acknowledged in previous reporting (McKee et al. 

2006b) that under complex conditions (e.g., Guadalupe River in 2005) professional 

judgment was used to guide these calculations. For example, Hg loads in GR were often 

stratified based on the predominant source of runoff indicated on hydrographs, resulting 

in separate regression relationships for urban vs. non-urban signals. These professional-

judgment-based turbidity surrogate load estimates were used as the best available load 

estimates, against which all sampling design scenarios were compared. 

 

Loads Analysis 

 

Sampling programs for watershed loads estimates are designed with two attributes 

in mind; the number of samples taken within a storm and the number of storms sampled 

during a year or wet season (Leecaster et al. 2002). Our analysis of the optimal sampling 
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method was performed in two steps. First, within-storm load estimates were compared 

among sampling designs and calculation methods. Secondly, using the results of the 

optimal within-storm sampling strategy, scenarios among storms were examined. A 

number of prospective designs were considered, including variations on sample 

collection and loads calculation within individual storms (i.e., within-storm designs), and 

sampling designs across the wet season (i.e., among-storm designs).  All designs were 

evaluated by Monte Carlo simulation. Bias and precision were calculated to evaluate all 

design scenarios. Bias was calculated as the median percentage difference between the 

expected estimate and the actual results. Precision was calculated as the variability in 

bias, measured as the standard deviation. Results were calculated and compiled using the 

statistical software package R (v. 2.10.1).   

The within-storm design analysis considered four aspects of sampling design:  1. 

storm sampling basis (i.e., flow based vs. turbidity based); 2. sampling emphasis; 3. 

sample size; and 4. loads estimation method (Table 2). To examine the first aspect of the 

analysis, each year of data for the two watersheds was analyzed for the presence of 

sampled storms using a) flow thresholds and b) turbidity thresholds (Table 3a and 3b). 

The use of a pre-set threshold simulates protocols for an automated sampler, which will 

collect water samples when preprogrammed thresholds are surpassed that characterize 

flow and concentration during each storm event hydrograph. Since both flow and 

turbidity increase during high-flow events, both were evaluated for use as primary drivers 

for sampling design. To define and select a storm, thresholds were statistically 

established for the start, peak, and end of each storm hydrograph. Storm selection criteria 

differed between the two watersheds. For GR, flow events greater than 200 cfs, with peak 

flow greater than 736 cfs, were flagged as storms (Table 3a). For Z4LA, flow events 

greater than 5 cfs, with peak flow greater than 26 cfs, were flagged as storms. The storm 

selection criteria were chosen to achieve thorough coverage of storm flow events, without 

including baseflow events. For the purposes of this analysis, flow that did not meet these 

criteria was deemed baseflow. In contrast to flow thresholds, turbidity-based storm 

selection thresholds were similar between GR and Z4LA (Table 3b). For GR, turbidity 

measurements greater than 30 NTU, during storms with peak turbidity greater than 84 

NTU, were flagged as storms. For Z4LA, the thresholds were 30 NTU and 89 NTU, 

respectively. 

The second aspect of the within-storm design was sampling emphasis, which 

refers to relative frequency of sample collection in the rising vs. falling stage.  Two 

approaches were considered: a) equal spacing of the samples across the rising and falling 

stages (i.e., 1:1 sampling emphasis) or b) rising-stage emphasis, where twice as many 

samples were spaced on the rising stage of the hydrograph relative to the falling stage 

(i.e., 2:1 sampling emphasis).  The rationale for considering a rising stage emphasis is 

that suspended sediment pollutant loads are typically greater and more variable during the 

rising stage (McKee et al. 2006b).   

The third aspect of within-storm design evaluated was the number of water 

samples collected per storm (i.e., sample size).  For Hg and SS, four sample sizes were 

considered:  6, 12, 18, and 24 collections per storm.  For PCBs, 6 and 12 collections per 

storm were considered; larger numbers of collection would be unfeasible due to the large 

sample volumes required for PCB lab analysis. The actual number of samples that could 

be evaluated for each scenario varied based on the size of each storm sampled.  
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The final aspect of within-storm design was the loads calculation method (Table 

4, Equations 1 - 3).  Methods for loads calculation will depend on the method used to 

integrate individual water collection events (Leecaster et al. 2002).  Specifically, auto 

samplers may obtain discrete or composite samples. Discrete samples are small samples 

(referred to as “sips”) taken by the auto sampler throughout the storm. Composite 

samples are the combined collection of many discrete sips that are used to represent 

conditions over an entire storm.  The data generated from composite samples collected in 

this manner are often referred to as event mean concentrations (USEPA 2002, Ma et al. 

2009). For the discrete sampling method, two loads calculation methods were examined: 

1) linear interpolation; and 2) flow weighted mean (Table 2). For the composite 

sampling, only a simple mean method was used to estimate loads because the other 

estimators require discrete data. These three loads calculation methods were tested for all 

combinations of sampling basis (flow or turbidity), number of samples collected per 

storm, and sampling stage emphasis (Table 2). The resulting within-storm load estimates 

were compared to the “best estimate” loads to assess performance of the sampling design 

and loads calculation methods.   

The among-storm design evaluations focused on number and type of storms 

sampled. Using the results from the optimum within-storm design, three strategies for 

sampling among storms were considered for their ability to estimate annual loads (Table 

5). The first among-storm design (Design A in Table 5) sampled the first flush (i.e., the 

first storm of a wet season) plus a variable number of random storms. The second among-

storm design (Design B in Table 5) sampled the first flush plus one of the three largest 

storms of the wet season and a variable number of random storms (Note we chose one of 

the three largest because although it is easy to define and then respond to a weather 

forecast for a large storm, we may also miss a storm that ends up larger than the forecast 

predicted - we can never know until the end of the season if we sampled the largest storm 

of the season or one of the three largest). The third among-storm design (Design C in 

Table 5) is the design written in the MRP and was evaluated using either 2 or 4 random 

storms. Designs A and B were evaluated for 2, 4, 6, and 10 storms (actual number 

depends on available data). To correspond with the MRP requirements, Design C 

evaluated 2 and 4 storms only.  All results were extrapolated to an estimated annual load 

by dividing by the ratio of sampled storm flow volume vs. total wet season flow volume 

(Table 4, Equation 4). Note that WY 2008 at Z4LA was deemed inappropriate for this 

analysis since the sampling began later in the season, and thus, an assessment of first 

flush and largest storms was not possible. 

The accuracy and precision for annual loads calculation using each sampling 

strategy was compared.  Monte Carlo simulations were employed to obtain random storm 

subsamples under each design method. Each design was run 50 times for each number of 

storms (to allow for random selection of storms), and an annual load was calculated for 

each run. The optimum strategy was identified as the design with the median closest to 

the annual best estimate of load, and the lowest variability in estimated annual loads. 

Each year of data was analyzed separately to demonstrate performance under a variety of 

climatic conditions. 

A parallel analysis was performed to examine performance of the turbidity 

surrogate regression method for annual pollutant loads estimation. First, Monte Carlo 

simulation was employed to examine the sample size requirements for developing a 
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relationship of turbidity to Hg, PCBs, and SS.  This was performed for each design within 

each year of data. The optimal sample size was examined by varying the number of 

samples in the TSR from 4 – 40 using Monte Carlo simulation (1000 simulations per 

design/year combination). Again, the actual sample sizes that could be simulated varied 

based on the empirical data sets. Each regression generated from a sub-sampled data set 

was converted into a continuous estimated pollutant concentration record by applying the 

regression to the continuous turbidity record. The continuous pollutant concentrations 

were then extrapolated to loads using the same methods as for the mass emission 

estimator. These annual loads based on sub-sampled data were compared against loads 

calculated using each water years’ complete grab sample data set to determine how many 

grab samples were necessary to obtain precise and unbiased load estimates. Once the 

optimum number of TSR samples was identified for each pollutant, the average 

regression slope and intercept (from the 1000 runs at the optimal sample number) were 

applied to the continuous flow and turbidity records to calculate per-storm loads. Finally, 

the TSR-based storm loads were extrapolated to annual loads using the same three among 

storms sampling strategies (Table 5), employing 50 runs per design. The performance of 

the TSR in the among-storm designs was compared to the TSR loads using all samples 

collected in a year, and the “best estimate” of annual loads. 

 

Trend Analysis 

 

Provision C.8.e. of the MRP calls for testing for trends towards compliance with 

loads allocations (SFRWQCB 2009). To support that provision, the objective of the 

trends analysis performed here was to determine the power to observe declining trends in 

the ratio of SSC to Hg concentration or SSC: PCB concentration given the current mean 

slope and variability. This is consistent with the presentation of TMDL targets on SSC 

normalized basis (SFRWQCB 2006, 2008). Trends were examined for reductions in the 

estimated particle concentration [mass/unit mass] from its current value to a value of 0.2 

mg Hg / kg suspended sediment (i.e., the SSC: Hg target) and 0.002 mg PCB / kg 

suspended sediment. These targets assume that urban suspended sediment loads in the 

Bay Area average 400 million kg annually (following Lewicke and McKee 2009). Note 

that for the Z4LA Hg trend analysis, initial regression results demonstrated that the 

current SSC: Hg slope estimates were below the 0.2 target (Appendix A). Therefore, in 

this analysis, the trend was examined for a target value of 0.05 mg Hg / kg suspended 

sediment (75% below 0.2 mg/kg). 

 Power to observe trends were evaluated at time periods of 10, 20, 25, and 40 

years. The analysis examined the power to detect a decline in SSC: Hg and SSC: PCBs 

(at alpha = 0.05) based on the coefficient of variation (CV = s.e. / mean). Sample sizes in 

future years were assumed to be the same as current (approximately 12 to 20 PCB 

samples per year and 15 – 50 Hg samples per year) or reduced to 7 or 10 samples per 

year. The CV was adjusted for the n = 7 and n = 10 scenarios. Although intuitively, one 

might expect CV to diminish over time, since a trait of cleaner systems is lower 

concentration variation (Appendix B), in the absence of information to quantitatively 

predict the shape of such a trend for Bay Area watersheds and pollutants of interest, 

power was evaluated assuming that the CV would show a linear decline over the time 

period evaluated.  
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RESULTS 
 

Optimal Sampling Designs for Estimating Annual Loads 

 

Guadalupe River 

 

Within-storm sampling design scenarios for Hg, PCBs, and suspended sediment 

(SS) generally indicated linear interpolation to be the most accurate estimator of loads per 

storm (Table 6). Complete results are tabulated in Appendix C.1. For all three pollutants, 

using either the flow-based or turbidity-based storm sampling methods, the accuracy 

(median bias) and precision (variability of bias) was higher at n = 12 than at n = 6. 

However, accuracy and precision for Hg did not notably improve from n = 12 to n = 18 

or n = 24.  Variability of bias generally decreased with increasing sample size. No 

improvement in accuracy or precision was evident using a rising stage (2:1) emphasis 

compared to samples evenly spaced over a storm hydrograph (1:1). Based on these 

findings, linear interpolation was used to characterize annual loads in the among-storm 

scenarios.  To obtain a cohesive analysis, a single storm sampling method and sample 

size was used for each pollutant and site combination (Table 7).  

Evaluation of the three among-storm sampling designs at GR (Table 5) indicated 

that the number of sampled storms strongly affected accuracy of estimated pollutant loads 

(Hg results in Figure 1; PCBs and SS results in Appendix E). Scenario results were 

generally similar for Hg, PCBs and SS loads, and for flow based vs. turbidity based storm 

sampling.  The Hg flow based selection results are described in further detail here (Figure 

1), while PCB and SS results, as well as all turbidity-based selection results, may be 

found in Appendices D.1 and E. The highest sample size of storms evaluated generally 

resulted in the lowest variability and bias in loads estimates (Figure 1).  In WY 2004 and 

2005, Design A (including first flush) and Design B (including first flush plus largest 

storm) demonstrated pronounced increases in accuracy and precision with each increase 

in storm sampling frequency (Figure 1b, 1c). Depending on the available data for 

simulations, either 6 or 10 storms were optimal for reducing bias. Design C (random 

storms only) consistently exhibited the least precision of the three designs at GR.  

However, Design C also exhibited less bias for 2 and 4 storms than the other designs.  

 

Zone 4 Line A 

 

Consistent with GR results, linear interpolation was the most accurate estimator of 

Hg, PCBs, and suspended sediment (SS) loads within individual storms (Table 6; 

Appendix C.2). Flow weighted mean performed particularly poorly for Z4LA. This may 

suggest that flow and concentrations were not as closely related in the storms analyzed 

(strong hysteresis).  Accuracy and standard deviation of Z4LA load estimates were 

improved at the higher sample sizes, using either the flow-based or turbidity-based storm 

selection methods. For Hg and SS, the bias and precision were similar at n = 18 and n = 
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24. For PCBs, the highest sample size (n = 12) was optimal. Larger sample sizes were not 

evaluated due to the limitations on PCB sample volume in auto-samplers. Both the 

magnitude of bias and variability in bias generally decreased with increasing sample size, 

particularly for linear interpolation. Similar to GR, no change in accuracy or precision 

was evident using a rising stage (2:1) emphasis versus evenly spaced (1:1) emphasis.  

Based on these findings for Z4LA, the flow-based design with 18 samples per storm for 

Hg and SS, 12 samples per storm for PCBs, and linear interpolation was used to 

characterize annual loads in the among-storm scenarios (Table 7).  

 Simulation of the three strategies for sampling among storms indicated that 10 

storms (the highest sample size) generally resulted in the lowest variability and bias in 

loads estimates (Figures 2, 3, and 4).  Turbidity-based results are summarized in 

Appendix D.2. Designs A and B generally had the lowest variability for both Hg and 

PCB loads (Figures 2 and 3). In WY 2009, there was little difference between Designs A 

and B. In contrast, simulation of WY 2007 indicated more variable results among 

designs. For Hg, PCBs, and SS (Figures 2, 3, and 4), Design C with 4 storms sampled 

approximated the best estimate load as well as the other designs (i.e., similar accuracy) 

but was associated with much higher variability (i.e., lower precision).   

  

 

Optimal Turbidity Surrogate Regression Designs for Estimating Annual Loads 

 

Guadalupe River 

 

Similar loads estimates could be obtained by the turbidity surrogate regression 

(TSR) method with significantly fewer samples than the full available sample size. 

Generally, all simulations indicated median loads that were similar to the best estimate 

load, reflecting the close relationships of these pollutants to turbidity. Simulations of the 

TSR showed that variability in the load estimates was markedly reduced at sample sizes 

of 7 or more (Figures 5, 6, and 7). For example, the median Hg load in WY 2004 at n = 7 

was 12.8 ± 2 kg, compared to the best estimate load of 13.0 kg. Monte Carlo simulations 

of the TSR also indicated that 7 samples were needed to accurately estimate for PCBs 

and SS loads. For example, median PCB load estimates in WY 2003 and 2004 were 1.7 ± 

0.4 kg and 1.1 ± 0.4 kg, respectively, compared to loads determined using all samples of 

0.9 kg and 0.5 kg, respectively. In WY 2005, a limited pool of samples (n = 12) was 

available for PCB simulation, and thus annual loads exhibited wider variability. 

However, SS loads were well sampled in all years and thus were generally consistent. 

Based on the finding that 7 samples provided an adequate basis for TSR in most GR 

scenarios, among-storm sampling strategies were examined using this sample size. 

Simulation of three among-storm sampling (Table 5) designs for annual loads 

estimation using TSR indicated that sampling 10 storms per year was optimal to 

approximate the best estimate loads (Figures 8 – 10). The error bounds for annual loads 

generally narrowed as the sample size increased, but there was considerable variability 

among years and pollutants. Simulation of Designs A and B most consistently produced 

the least bias estimates, but not in all cases. For example, WY 2004 results indicated 

similar Hg load estimates using either Design A or B, and wider variability for Design C. 

In contrast, estimated loads with Design C were more consistent in WY 2005 than either 
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of the other designs. PCB and SS loads were less variable than Hg loads, but still 

indicated that 10 storms were required for minimum bias in loads.  

As a final comparison, the bias and precision in sampling 10 storms using either 

Design A or B (Table 5) were compared between linear interpolation and TSR. For all 

three pollutants, linear interpolation provided more accurate and precise estimation of the 

best estimate load in WY 2005 (Table 8). A sampling strategy employing first flush and 

10 total storms (Design A) with linear interpolation suggested relatively high accuracy 

for Hg and PCB loads of approximately 10%. Using TSR, PCB loads had very low 

accuracy, suggesting variability on the order of 50%. For SS, linear interpolation with 

Design B suggested the best design, which was estimated to have accuracy of 

approximately 1% under the WY 2005 scenario. 

 

Zone 4 Line A 

 

Simulations of the TSR for Z4LA supported the GR results that similar estimates 

of loads could be obtained with significantly less samples than the full available sample 

size (Figures 11, 12, 13). Simulations for Hg and PCBs indicated that 7 samples per year 

were needed to accurately estimate loads each year. Although the median load estimate 

did not vary greatly with increasing sample size, variability was significantly reduced 

with 7 or more samples. Simulation of these datasets indicated that the TSR was robust at 

all sample sizes in WY 2007 and 2008. Due to lower sample size of PCBs in WY 2009, 

there was greater variability in the load estimates. The accuracy of SS loads was 

relatively high at all sample sized evaluated due to the larger number of available sample 

points for simulation. However, the variability in loads spanned more than two orders of 

magnitude at sample sizes less than 10 (particularly in 2007). In summary, storm 

sampling strategies based on TSR as described below, were examined using 7 samples 

for Hg and PCBs, and 10 samples for SS. 

Simulation of three among-storm sampling (Table 5) designs for annual loads 

estimation using TSR indicated that sampling the maximum number of storms each year 

was optimal for minimum bias and precise load estimates. For Hg loads, sampling of 10 

storms per year using Design A or B achieved the least amount of variability and most 

accurate loads in 2007 (Figure 14). Simulations using 2009 data, indicated 4 – 6 storms 

using Design A would be sufficient, as the median load and variability did not vary 

greatly at greater sampling intensity or when one of the largest storms was included. 

Design C under predicted the best estimate loads in WY 2007, but attained reasonably 

close estimation of the best estimate load in WY 2009. PCB and SS loads were similar to 

Hg and best approximated loads at Z4LA by sampling of 10 storms (Figures 15 and 16).  

 Finally, TSR was compared to linear interpolation to evaluate bias in loads using 

the first flush designs when sampling 10 storms in WY 2009 (Table 5). Using either TSR 

or linear interpolation, Design A indicated better accuracy and precision relative to 

Design B.  PCB loads were the most variable of the three pollutants in both methods, 

with an estimated bias of around 30% relative to the best estimate. However, estimated 

loads were very accurate for Hg (~ 1%) using either method and represented similar 

levels of precision (5%). Interestingly, SS loads were generally more accurate using TSR, 

but exhibited less precision than linear interpolation. 
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Trend Analysis 

 

Guadalupe River 

 

Trend analysis indicated that the power to detect trends in SSC: Hg using the 

current sampling intensity (Table 9) was generally greater than 90%. In WY 2004 and 

2005, future sample sizes could be reduced to 7 samples per year from current sample 

sizes of 37 and 52, respectively, without loss of power to detect trends in the next 10 – 40 

years (Table 10). Due to the lower SSC: Hg slope estimate (1.14) and weak regression 

relationship in 2003 (CV = 2.35; R
2
 = 0.30), there was very low power to detect trends in 

that year.  

Estimates of power to detect trends in the SSC: PCB relationship were also 

generally high (> 90%). Based on WY 2003 and 2004 data, future sample sizes could be 

reduced to 10 samples per year from current sample sizes of 21 and 19, respectively 

(Table 10). However, trend analysis performed with the lower SSC: PCB slope estimate 

measured in WY 2005 (0.12) indicated that relatively high power would not be achieved 

for a 10 year trend.  Overall, the power analysis suggested that fewer sample sizes at GR 

would not inhibit the ability to detect declines in Hg and PCB concentrations.  

 

Zone 4 Line A 

 

The trend analysis for Z4LA indicated the power to detect trends in SSC: Hg 

using the current sampling intensity (Table 11) was generally greater than 90%. 

Scenarios run with the SSC: Hg slope estimate from 2009, indicated that future sample 

sizes could be reduced to 10 samples per year from a current sample sizes of 30 without 

loss of power for trends in 20, 25, and 40 years (Table 12).  

Estimates of power to detect trends in the SSC: PCB relationship were very high 

(> 95%). In WY 2007 and 2008, future sample sizes could be reduced to 7 samples per 

year from current sample sizes of 15 and 14, respectively, for all trend scenarios 

evaluated (Table 12). However, at a sample size of 7 per year, 95% power would only be 

achieved in WY 2007 for 25 and 40 year trends.  Overall, the power analysis suggested 

that lower sizes would also not inhibit the ability to detect declines in Hg and PCB 

concentrations at Z4LA. 

 

SUMMARY 

 

o The optimal within-storm design in GR and Z4LA evaluations was an equal-spacing, 

flow or turbidity-based sampling method, with the linear interpolation estimator.  

 

o The optimal among-storm design was highly dependant on sample size. When small 

numbers of storms were simulated per year, sampling strategies that included first 

flush or largest storms per year (i.e., Designs A and B) exhibited substantial upward 

bias in estimated annual load.  The first flush and large storm events generally have 
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greater suspended sediment and pollutant concentrations than other storms; as a 

result, overemphasizing these events would result in overestimates of annual loads.  

Not surprisingly, the best estimates of annual loads were achieved in the largest 

sample sizes examined (10 storms per year).   

 

o Designs that randomly sample storms throughout the year (i.e., Design C) without 

emphasizing first flush or large events have better accuracy at small sample sizes.  

However, these designs exhibit poor precision, with highly variable estimated loads.  

 

o Evaluation of the turbidity-surrogate regression methods suggested that sampling 

frequency could be significantly reduced. For example, 10 storms sampled per year 

with one or two samples per storm were indicated. 

  

o Results of the trend analysis indicated that power to detect long term trends in SSC: 

Hg concentrations and SSC: PCB concentrations should be high using a variety of 

sampling designs.  
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Table 1. Summary of Guadalupe River and Zone 4 Line A data examined in this study. 

  
Location Water Years 

Examined 
Peak Discharge 

(m
3
/s) 

Suspended 
Sediment 
FWMC 
(mg/L) 

THg  
FWMC  
(ng/L) 

TPCBs 
FWMC  
(ng/L) 

Guadalupe River 
(GR) 

2003 172 204 2190 55 
2004 124 191 329 26 
2005 112 79 140 45 

Zone 4  
Line A (Z4LA) 

2007 6.3 212 48 27 
2008* 6.7 350 60 25 
2009 4.7 109 23 11 

* Data for partial year that included 2 dry season months. 

 

 

Table 2. Design options examined for sampling within storms.  
Design Criteria  Design Options for Sampling Within Storms  

1. Storm Sampling Basis Flow-based or turbidity-based thresholds 

2. Emphasis Rising stage (2:1) or evenly spaced (1:1) 
3. Max Sample Size (n) per Storm  
(actual n depends on storm size) 24*, 18*, 12, 6 

4. Load Calculation Methods** 
     Discrete Designs LI – linear interpolation; FWM – flow-weighted mean 

     Composite Designs SM – simple mean ** 

* Evaluated for Hg and suspended sediments only due to limitation on volumes required for PCB lab 

analysis 

** Loads calculation methods differed for discrete vs. composite designs. 

*** The other methods require discrete measurements 

 

 

Table 3a. Flow-Based storm selection criteria by watershed. 

 
Dataset Flow Thresholds for Storm 

Selection (cfs) 
Minimum Peak Flow for 

Storm Selection (cfs) 

Guadalupe River 200 736 
Zone 4 Line A 5 26 

 

 

Table 3b. Turbidity-Based storm selection criteria by watershed. 

 
Dataset Turbidity Thresholds for 

Storm Selection (NTU) 
Minimum Turbidity Peak for 

Storm Selection (NTU) 

Guadalupe River 30 84 
Zone 4 Line A 30 89 
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 Table 4. Equations used to evaluate pollutant loads within- and among-storms. 

 

Within-storm Estimators Among-storm Ratio Estimator
1
 

Simple Mean  

 

 

 

 

Equation 4: 

WY_LL.I. = M
 Vk * 

m
  Lk / m

 Vk   

                   
k=1                k=1

               
k=1

 

  

Equation 1: 

LS.M. = (N
 [xj]/N) (n

 Qi*t)  
                     j=1                        i=1 

Linear Interpolation 

Equation 2: 

LL.I. = n
 [xi,int]*Qi*t 

                i=1 

Flow-weighted Mean 

Equation 3: 

LF.W. = (N
 [xj]*Qj)(n

 Qi*t)/(N
 Qj) 

                     j=1                         i=1                        j=1 

1 = Ratio Estimator used to calculate annual loads using optimal within-storm estimation method (i.e. Equations 1,2 or 3). 

 

Where, L = estimate of mass loading for a storm; WY_L = estimate of annual mass 

emissions; t = time interval between discharge measurements; N = number of samples 

taken during storm; n = number of time intervals in storm (based on frequency of 

discharge measurements); [xj] = concentration of sample j; [xi,int] = [xj] interpolated to all 

n time intervals in storm;  Qi = discharge at time step i; Qj = discharge at sampling event j 

Vk = discharge volume for storm k; m = number of storms sampled; and M = number of 

storms. 

 

 

Table 5. Design options examined for sampling among storms.  

 
Design Criteria Design Options for Sampling Among Storms 

 A B C** 

Which storms 
First flush, and 

random N 
First flush, largest storm*, and 

random N Random N 
Total Number 
Storms (N) 10, 6, 4, 2 10, 6, 4, 2 4, 2 

* To account for selection uncertainty, the largest storm was selected randomly from the three highest total 

volume discharges per water year 

** MRP design and sample sizes 
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Table 6. Comparison of bias in within-storm loads estimates for sample designs at 

Guadalupe River and Zone 4 Line A (sample emphasis = 1:1, flow-based criteria). 

 
 Guadalupe River 

 Median Bias +/- St. Deviation 

Pollutant* Simple Mean                Linear Interpolation        Flow-weighted Mean     

Hg (n = 12) -0.21 ± 0.18 -0.05 ± 0.25 -0.02 ± 0.33 
PCBs (n = 12) -0.04 ± 0.30 0.02 ± 0.28 0.15 ± 0.35 
SS (n = 12) -0.20 ± 0.24 -0.01 ± 0.24 0.07 ± 0.42 

 Zone 4 Line A 

 Median Bias +/- St. Deviation 

Pollutant* Simple Mean                Linear Interpolation        Flow-weighted Mean     

Hg (n = 18) -0.14 ± 0.23 0.01 ± 0.23 0.17 ± 0.38 
PCBs (n = 12) -0.26 ± 0.26 -0.11 ± 0.30 -0.09 ± 0.45 
SS (n = 18) -0.17 ± 0.27 0.003 ± 0.26 0.15 ± 0.44 

* Number in parentheses designates number of samples evaluated per storm 

 

 

Table 7. Within-storm design strategies used for among-storm analyses. 

 
Site Pollutant Loads Estimation 

Method 
Sampling 
Emphasis 

Sample Size 
per Storm 

 
Guadalupe River 

Hg  
 

Linear 
Interpolation 

 
 

Evenly 
Spaced 

(1:1) 

12 
PCBs 12 
SSC 12 

 
Zone 4 Line A 

Hg 18 
PCBs 12 
SSC 18 
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Table 8. Comparison of bias in median annual loads (+/- st. dev) resulting from turbidity-

surrogate and linear interpolation in WY 2005 at GR and WY 2009 at Z4LA using two 

among storm sampling strategies (Design A and B in Table 5; N = 10 storms).  

 
 Turbidity-surrogate Linear Interpolation 

Watershed Pollutant Water Year Design A Design B Design A Design B 

Guadalupe 
River (GR) 

Hg  
 

2005 
-0.20 ± 0.25 0.09 ± 0.22 0.08 ± 0.05 0.09 ± 0.06 

Guadalupe 
River (GR) 

PCBs 
0.54 ± 0.22 0.57 ± 0.20 0.11 ± 0.06 0.13 ± 0.07 

Guadalupe 
River (GR) 

SS 
0.09 ± 0.23 0.17 ± 0.22 -0.04 ± 0.05 -0.01 ± 0.05 

Zone 4 Line A 
(Z4LA) 

Hg  
 
 

2009 

-0.02 ± 0.05 -0.01 ± 0.04 -0.01 ± 0.08 0.04 ± 0.08 
Zone 4 Line A 
(Z4LA) 

PCBs 
0.26 ± 0.09 0.33 ± 0.10 0.26 ± 0.15 0.30 ± 0.14 

Zone 4 Line A 
(Z4LA) 

SS 
0.13 ± 0.08 0.19 ± 0.09 0.08 ± 0.17 0.17 ± 0.15 

 

 

Table 9. Data used to examine power for trend analysis at Guadalupe River. 

 
Pollutant Year Current 

Sample 
Size 

Mean 
Slope 

S.D. 
Slope 

95% C.I. Slope 
(lower, upper) 

R
2
 

 
Hg 

2003 25 1.14 13.4 -4.42, 6.70 0.30 
2004 37 1.44 0.73 1.20, 1.69 0.94 
2005 52 2.23 1.34 1.86, 2.61 0.93 

 
PCBs 

2003 21 0.06 0.05 0.03, 0.08 0.87 
2004 19 0.11 0.11 0.06, 0.16 0.85 
2005 12 0.12 0.18 0.00, 0.23 0.75 
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Table 10. Estimates of power to detect trends in the slope of SSC: Hg and SSC: PCBs at  

Guadalupe River. 

 
  Hg PCBs 

Year  
Number of  

Years to Reach 
Target  

 
Power for 
Current 

Sample Size* 

 
Power for 

 

 
Power for 
Current 
Sample 
Size** 

 
Power for 

n = 7 n = 10 n = 7 n = 10 

 
2003 

10 12 10 11 100 83 93 
20 13 11 11 100 98 100 
25 14 11 12 100 99 100 
40 17 12 13 100 100 100 

 
2004 

 

10 100 100 100 99 77 88 
20 100 100 100 100 96 99 
25 100 100 100 100 98 100 
40 100 100 100 100 100 100 

 
2005 

10 100 98 100 63 45 56 
20 100 100 100 87 69 82 
25 100 100 100 93 77 88 
40 100 100 100 99 91 97 

* For 2003, n = 25; For 2004, n = 37; For 2005, n = 52  
** For 2003, n = 21; For 2004, n = 19; For 2005, n = 12 

 

 

Table 11. Data used to examine power for trend analysis at Zone 4 Line A. 

 
Pollutant Year Current 

Sample 
Size 

Mean 
Slope 

S.D. 
Slope 

95% C.I. Slope 
(lower, upper) 

R
2
 

 
Hg 

2007 30 0.13 0.11 0.09, 0.17 0.60 
2008 15 0.38 0.61 0.04, 0.72 0.31 
2009 21 0.08 0.05 0.05, 0.10  0.71 

 
PCBs 

2007 18 0.06 0.07 0.03, 0.10 0.82 
2008 15 0.16 0.13 0.09, 0.23 0.90 
2009 14 0.08 0.02 0.07, 0.10 0.98 
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Table 12. Estimates of power to detect trends in the slope of SSC: Hg and SSC: PCBs at  

Zone 4 Line A. Note that the SSC: Hg are currently below the target of 0.2 mg/kg, 

therefore the trend was examined for a target of 0.05 mg/kg, which is 75% below the 

original target of 0.2 mg/kg for urban stormwater (see Methods).  

 
  Hg PCBs 

Year  
Number of  

Years to Reach 
Target  

 
Power for 
Current 

Sample Size* 

 
Power for 

 
Power for 
Current 
Sample 
Size** 

 
Power for 

 
n = 7 

 
n = 10 

 
n = 7 

 
n = 10 

 
2007 

10 98 55 68 95 66 79 
20 100 81 91 100 90 97 
25 100 88 96 100 95 99 
40 100 97 100 100 99 100 

 
2008 

 

10 62 38 48 100 91 97 
20 87 60 73 100 100 100 
25 93 68 81 100 100 100 
40 99 85 94 100 100 100 

 
2009 

10 74 38 48 100 100 100 
20 94 59 72 100 100 100 
25 98 67 80 100 100 100 
40 100 84 93 100 100 100 

* For 2007, n = 30; For 2008, n = 15; For 2009, n = 21  
** For 2007, n = 18; For 2008, n = 15; For 2009, n =14 
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Figure Captions 

 

Figure 1. Comparison of annual Hg loads at Guadalupe River in 2003-2005 based on 

three designs for sampling among storms (Table 5). Loads were calculated using linear 

interpolation with flow-based storm selection criteria. Design A simulated sampling of 

the first flush only and a variable number of random storms. Design B simulated the first 

flush plus one of the three largest storms and a variable number of random storms. 

Design C only tested the random storm component. --------- = best estimate Hg load for 

year (96 kg, 13 kg, and 7 kg, respectively).  

 
Figure 2. Comparison of annual Hg loads at Zone 4 Line A in 2007 and 2009 based on 

three designs for sampling among storms (Table 5).  See Figure 1 caption and text for 

further information.  --------- = best estimate Hg load for year (17 g and 11 g, 

respectively). 

 

Figure 3. Comparison of annual PCB loads at Zone 4 Line A in 2007 and 2009 based on 

three designs for sampling among storms (Table 5).  See also Figure 1 caption and text.   

--------- = best estimate PCB load for year (8 g and 5 g, respectively). 

 

Figure 4. Comparison of annual SS loads at Zone 4 Line A in 2007 and 2009 based on 

three designs for sampling among storms (Table 5).  See also Figure 1 caption and text.   

--------- = best estimate SS load for year (0.10 10
6 

kg and 0.05 10
6 

kg, respectively). 

 
Figure 5. Results of Monte Carlo simulations to determine the optimum number of 

samples required to estimate Hg loads at Guadalupe River using the turbidity surrogate 

regression method. --------- = load determined using all samples collected in each year. 

 

Figure 6. Results of Monte Carlo simulations to determine the optimum number of 

samples required to estimate PCB loads at Guadalupe River using the turbidity surrogate 

regression method. --------- = load determined using all samples collected in each year. 

 

Figure 7. Results of Monte Carlo simulations to determine the optimum number of 

samples required to estimate suspended sediment (SS) loads at Guadalupe River using the 

turbidity surrogate regression method. --------- = load determined using all samples 

collected in each year. 

 

Figure 8. Comparison of annual Hg loads at Guadalupe River in 2003-2005 based on 

three designs for sampling among storms (Table 5) using turbidity surrogate regression. -

-------- = Hg load from all storms sampled each year. 

 

Figure 9. Comparison of annual PCB loads at Guadalupe River in 2003-2005 based on 

three designs for sampling among storms (Table 5) using turbidity surrogate regression. -

-------- = PCB load from all storms sampled each year. 
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Figure 10. Comparison of annual SS loads at Guadalupe River in 2003-2005 for three 

designs for sampling among storms (Table 5). --------- = SS load from all storms sampled 

each year. 

 

Figure 11. Results of Monte Carlo simulations to determine the optimum number of 

samples required to estimate Hg loads at Zone 4 Line A using the turbidity surrogate 

regression method. --------- = load determined using all samples collected in each year. 

 

Figure 12. Results of Monte Carlo simulations to determine the optimum number of 

samples required to estimate PCB loads at Zone 4 Line A using the turbidity surrogate 

regression method. --------- = load determined using all samples collected in each year. 

 

Figure 13. Results of Monte Carlo simulations to determine the optimum number of 

samples required to estimate suspended sediment (SS) loads at Zone 4 Line A using 

turbidity surrogate regression. --------- = load determined using all samples collected in 

each year. 

 

Figure 14. Comparison of annual Hg loads at Zone 4 Line A in 2007-2009 based on three 

designs for sampling among storms (Table 5) using turbidity surrogate regression.  

---------- = Hg load from all storms sampled each year. 

 

Figure 15. Comparison of annual PCB loads at Zone 4 Line A in 2007-2009 based on 

three designs for sampling among storms (Table 5) using turbidity surrogate regression.  

---------- = PCB load from all storms sampled each year. 

 

Figure 16. Comparison of annual SS loads at Zone 4 Line A in 2007-2009 based on three 

designs for sampling among storms (Table 5) using turbidity surrogate regression.  

---------- = SS load from all storms sampled each year. 
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Figures 

 

a) 2003 

 
b) 2004 

 
c) 2005 

 
 

Figure 1a-c  
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a) 2007 

 
 

b) 2009 

 
Figure 2a-b  
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a) 2007 

 
 

b) 2009 

 
 

Figure 3a-b 
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a) 2007 

 
 

b) 2009 

 
 

Figure 4a-b
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Figure 6  
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Figure 7 
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a) 2003 

 
 

b) 2004 

 
 

 

c) 2005 

 
Figure 8a-c  
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a) 2003 

 
 

b) 2004 

 
 

c) 2005 

 
 

Figure 9a-c 
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 a) 2003 

 
 

b) 2004 

 
 

c) 2005 

 
 

Figure 10a-c 
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Figure 11 
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Figure 12 
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Figure 13 
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a) 2007 

 
 

b) 2009 

 
 

Figure 14a-b 
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a) 2007 

 
 

b) 2009 

 
 

Figure 15a-b 
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a) 2007 

 
 

 

b) 2009 

 
 

Figure 16a-b 
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Appendix A – SSC: Hg relationships at Zone 4 Line A 

 

The mean slopes of SSC: Hg at Z4LA were below the target slopes for the trend analysis 

of 0.2 mg Hg / kg suspended sediment in two of the three years. Due to this situation, the 

Hg trend analysis examined power for trends assuming a target of 0.05 mg Hg / kg 

suspended sediment. The revised target was 75% below 0.2 mg/kg and was selected to 

ensure the trend could be examined for all years. 

 
Figure A.1. SSC: Hg relationships at Zone 4 Line A. The mean slope estimate for 2007 – 

2009 were 0.13, 0.38, and 0.08, respectively. The mean slope of all three years was 0.19. 
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Appendix B. Literature review of mercury variation by McKee et al. (2004) 

 

    

1 10 100 1000 10000

Mostly undisturbed, 12% Agriculture (5)
Undisturbed rural (2)
Undisturbed rural (1)
83% Agriculture (6)
Mostly Urban (10)

61% Agriculture (9)
100% urban (11)

2% urban, 35% Agriculture (7)
Mostly Urban (8)

Dam (3)
28% urban, 20% Agriculture (14)

1% urban, 31% Agriculture (12)
1% urban, 27% Agriculture (4)

Nyanza chemical dump super fund (13)
70% urban, New Almaden mining district (15)

Abandoned mercury mines (17)
Gambonini mine (18)

Cache Ck. Mining (16)

Concentration variation (maximum/minimum)
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 River (Source, see McKee et al. 2004) Description Min THg Max THg Max/min 

5 Rappahannock R., Chesapeake (Lawson et al., 2001) Mostly undisturbed, 12% Agriculture (5) 10.3 24.9 2.4 

2 Site B1 Sudbury R., Massachusetts (Waldron et al., 2000) Undisturbed rural (2) 1.9 5.4 2.8 

1 Site B2 Sudbury R., Massachusetts (Waldron et al., 2000) Undisturbed rural (1) 0.99 3.6 3.6 

6 Choptank R., Chesapeake (Lawson et al., 2001) 83% Agriculture (6) 6.8 26.2 3.9 

10 Anacostia R. NE. Branch (Mason and Sullivan, 1998) Mostly Urban (10) 8.72 39.5 4.5 

9 Susquehanna R., Chesapeake (Lawson et al., 2001) 61% Agriculture (9) 7 32.8 4.7 

11 Herring Run R., Chesapeake (Lawson et al., 2001) 100% urban (11) 12.2 62.8 5.1 

7 At Freeport, Sacramento Basin (Domagalski and Dileanis, 2000; Roth et al., 2001) 2% urban, 35% Agriculture (7) 4.2 29 6.9 

8 Anacostia R. NW. Branch (Mason and Sullivan, 1998) Mostly Urban (8) 4.45 30.8 6.9 

3 Below Keswick Dam, Sacramento Basin (Domagalski and Dileanis, 2000; Roth et al., 2001) Dam (3) 1.1 7.9 7.2 

14 Potomac R., Chesapeake (Lawson et al., 2001) 28% urban, 20% Agriculture (14) 12.1 93.1 7.7 

12 At Colusa, Sacramento Basin (Domagalski and Dileanis, 2000; Roth et al., 2001) 1% urban, 31% Agriculture (12) 6.5 81 12 

4 Above Bend Bridge, Sacramento Basin (Domagalski and Dileanis, 2000; Roth et al., 2001) 1% urban, 27% Agriculture (4) 1.2 19 16 

13 Site M1 Sudbury R., Massachusetts (Waldron et al., 2000) Nyanza chemical dump super fund (13) 5.2 92 18 

15 Guadalupe R., Bay Area (Leatherbarrow et al., 2002) 70% urban, New Almaden mining district (15) 18 730 41 

16 Kuskakwim R. Basin, SW Alaska (Gray et al., 2000) Abandoned mercury mines (17) 10 2500 250 

17 Walker Ck. Marin County, California (Whyte and Kirchner, 2000) Gambonini mine (18) 485 1040000 2144 

15 Cache Ck., Sacramento Basin (Domagalski and Dileanis, 2000) Cache Ck. Mining (16) 1 2250 2250 
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Appendix C –Within-storm Sampling Designs 

 

Results are shown here for evaluation of within-storm sampling designs using flow and 

turbidity-based selection criteria. Bias here refers to the best estimate of loads per storm. 

Both flow and turbidity-based sampling criteria identified similar levels of accuracy 

(median load bias) and precision (standard error in load bias) in estimation of loads for 

the three pollutants (Hg, PCBs, suspended sediment). 
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C.1. Guadalupe River 

 

 

 

 

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 177 -50% 6%

Even 12 330 -21% 3%

Even 18 402 -14% 3%

Even 24 393 -10% 3%

Rising Stage 6 177 -50% 5%

Rising Stage 12 304 -25% 3%

Rising Stage 18 365 -15% 3%

Rising Stage 24 419 -10% 3%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 205 -40% 7%

Even 12 411 -5% 5%

Even 18 510 0% 4%

Even 24 429 3% 3%

Rising Stage 6 205 -40% 7%

Rising Stage 12 454 -3% 6%

Rising Stage 18 460 3% 4%

Rising Stage 24 520 2% 4%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 183 -47% 7%

Even 12 510 -2% 6%

Even 18 623 4% 5%

Even 24 533 10% 5%

Rising Stage 6 183 -45% 7%

Rising Stage 12 518 0% 7%

Rising Stage 18 479 9% 6%

Rising Stage 24 598 9% 6%

Flow-weighted Mean

Table C.1a. Summary of within-storm Hg loads (g) at Guadalupe River determined using three 

mass emission estimators. Flow-based storm selection criteria.

Simple Mean

Linear Interpolation

437

437

437
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Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error 

Even 6 149 -41% 4%

Even 12 241 -14% 3%

Even 18 251 -8% -1%

Even 24 272 21% 3%

Rising Stage 6 149 -41% 4%

Rising Stage 12 237 -12% 4%

Rising Stage 18 277 -4% 4%

Rising Stage 24 289 0% 4%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error 

Even 6 175 -28% 4%

Even 12 257 -4% 3%

Even 18 284 0% 1%

Even 24 275 -1% 2%

Rising Stage 6 175 -30% 6%

Rising Stage 12 270 7% 4%

Rising Stage 18 274 4% 3%

Rising Stage 24 299 2% 2%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error 

Even 6 177 -30% 6%

Even 12 293 2% 4%

Even 18 321 12% 3%

Even 24 331 9% 3%

Rising Stage 6 178 -26% 7%

Rising Stage 12 307 13% 5%

Rising Stage 18 301 14% 5%

Rising Stage 24 324 17% 5%

Simple Mean

285

Linear Interpolation

285

Flow-weighted Mean

285

Table C.1b. Summary of within-storm Hg loads (g) at Guadalupe River determined using three 

mass emission estimators. Turbidity-based storm selection criteria.
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Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error 

Even 6 37 -18% 7%

Even 12 33 -4% 6%

Rising Stage 6 37 -15% 6%

Rising Stage 12 42 -1% 6%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error 

Even 6 40 -9% 8%

Even 12 34 2% 5%

Rising Stage 6 43 -1% 7%

Rising Stage 12 52 5% 6%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error 

Even 6 38 -13% 7%

Even 12 33 15% 7%

Rising Stage 6 39 1% 7%

Rising Stage 12 53 14% 7%

29

Table C.1c. Summary of within-storm PCB loads (g) at Guadalupe River determined 

using three mass emission estimators. Flow-based storm selection criteria.

29

Flow-weighted Mean

29

Linear Interpolation

Simple Mean
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Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 9.1 -10% 4%

Even 12 11.3 -2% 4%

Rising Stage 6 9.1 -8% 5%

Rising Stage 12 11.5 3% 6%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 9.3 -3% 4%

Even 12 11.3 -1% 4%

Rising Stage 6 9 -1% 7%

Rising Stage 12 13.5 12% 6%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 9.1 -3% 5%

Even 12 13.4 10% 6%

Rising Stage 6 9.1 -1% 8%

Rising Stage 12 14.9 19% 8%

Linear Interpolation

Simple Mean

10

Table C.1d. Summary of within-storm PCB loads (g) at Guadalupe River determined 

using three mass emission estimators. Turbidity-based storm selection criteria.

10

Flow-weighted Mean

10
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Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 111 -50% 4%

Even 12 199 -20% 5%

Even 18 197 -10% 4%

Even 24 219 -10% 4%

Rising Stage 6 111 -46% 4%

Rising Stage 12 182 -17% 4%

Rising Stage 18 218 -8% 4%

Rising Stage 24 219 -1% 4%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 124 -40% 5%

Even 12 226 -1% 5%

Even 18 254 2% 4%

Even 24 245 2% 3%

Rising Stage 6 124 -34% 6%

Rising Stage 12 244 3% 6%

Rising Stage 18 258 6% 4%

Rising Stage 24 278 6% 4%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 114 -47% 6%

Even 12 270 7% 8%

Even 18 286 16% 6%

Even 24 280 19% 5%

Rising Stage 6 114 -38% 8%

Rising Stage 12 282 17% 7%

Rising Stage 18 281 22% 6%

Rising Stage 24 316 20% 5%

Simple Mean

224

Table C.1e. Summary of within-storm suspended sediment loads (kg) at Guadalupe River 

determined using three mass emission estimators. Flow-based storm selection criteria.

224

Flow-weighted Mean

224

Linear Interpolation
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Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 47 -37% 4%

Even 12 57 -19% 3%

Even 18 63 -2% 3%

Even 24 64 -3% 3%

Rising Stage 6 47 -37% 1%

Rising Stage 12 68 -4% 4%

Rising Stage 18 68 3% 4%

Rising Stage 24 72 4% 4%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 50 -24% 5%

Even 12 68 -2% 3%

Even 18 72 2% 1%

Even 24 68 1% 2%

Rising Stage 6 50 -20% 6%

Rising Stage 12 78 18% 3%

Rising Stage 18 76 9% 3%

Rising Stage 24 77 5% 2%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 48 -28% 6%

Even 12 74 13% 4%

Even 18 78 22% 3%

Even 24 80 19% 3%

Rising Stage 6 48 -19% 7%

Rising Stage 12 86 31% 4%

Rising Stage 18 86 30% 3%

Rising Stage 24 89 27% 3%

70

70

Flow-weighted Mean

70

Linear Interpolation

Simple Mean

Table C.1f. Summary of within-storm suspended sediment loads (kg) at Guadalupe River 

determined using three mass emission estimators. Turbidity-based storm selection criteria.
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C.2. Zone 4 Line A 

 

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 142 -46% 3%

Even 12 180 -26% 3%

Even 18 248 -14% 3%

Even 24 258 -8% 2%

Rising Stage 6 143 -41% 3%

Rising Stage 12 275 -15% 4%

Rising Stage 18 272 -5% 3%

Rising Stage 24 295 1% 3%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 144 -44% 4%

Even 12 203 -11% 4%

Even 18 279 1% 3%

Even 24 278 3% 1%

Rising Stage 6 144 -38% 5%

Rising Stage 12 351 13% 4%

Rising Stage 18 311 9% 3%

Rising Stage 24 310 7% 2%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 146 -44% 4%

Even 12 225 -9% 6%

Even 18 351 17% 5%

Even 24 358 17% 3%

Rising Stage 6 153 -38% 6%

Rising Stage 12 401 28% 7%

Rising Stage 18 395 28% 5%

Rising Stage 24 388 28% 4%

290

290

Flow-weighted Mean

290

Linear Interpolation

Table C.2a. Summary of within-storm Hg loads (mg) at Zone 4 Line A determined using three 

mass emission estimators.  Flow-based storm selection criteria.

Simple Mean
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Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 93 -41% 3%

Even 12 113 -12% 4%

Even 18 138 -5% 3%

Even 24 136 -1% 3%

Rising Stage 6 99 -34% 3%

Rising Stage 12 127 -1% 4%

Rising Stage 18 147 5% 4%

Rising Stage 24 152 8% 4%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 108 -30% 4%

Even 12 143 3% 2%

Even 18 166 3% 1%

Even 24 158 3% 1%

Rising Stage 6 109 -22% 7%

Rising Stage 12 184 22% 4%

Rising Stage 18 177 12% 2%

Rising Stage 24 166 8% 2%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 95 -29% 5%

Even 12 157 13% 4%

Even 18 192 17% 4%

Even 24 187 18% 4%

Rising Stage 6 109 -22% 7%

Rising Stage 12 202 34% 5%

Rising Stage 18 191 33% 5%

Rising Stage 24 196 31% 4%

152

152

Flow-weighted Mean

152

Linear Interpolation

Table C.2b. Summary of within-storm Hg loads (mg) at Zone 4 Line A determined using 

three mass emission estimators.  Turbidity-based storm selection criteria.

Simple Mean
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Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 59 -47% 3%

Even 12 89 -26% 3%

Rising Stage 6 61 -42% 3%

Rising Stage 12 119 -15% 4%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 62 -44% 4%

Even 12 104 -11% 4%

Rising Stage 6 65 -40% 5%

Rising Stage 12 145 13% 4%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 61 -44% 4%

Even 12 113 -9% 6%

Rising Stage 6 63 -38% 6%

Rising Stage 12 180 27% 7%

Table C.2c. Summary of within-storm PCB loads (mg) at Zone 4 Line A determined using three 

mass emission estimators. Flow-based storm selection criteria.

Simple Mean

131

Linear Interpolation

131

131

Flow-weighted Mean
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Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 39 -45% 3%

Even 12 54 -14% 4%

Rising Stage 6 44 -40% 3%

Rising Stage 12 58 -5% 5%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 44 -35% 4%

Even 12 63 3% 2%

Rising Stage 6 48 -22% 8%

Rising Stage 12 93 18% 4%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 47 -35% 5%

Even 12 68 14% 5%

Rising Stage 6 47 -22% 8%

Rising Stage 12 90 34% 6%

Table C.2d. Summary of within-storm PCB loads (mg) at Zone 4 Line A determined using 

three mass emission estimators.  Turbidity-based storm selection criteria.

Simple Mean

Flow-weighted Mean

67

Linear Interpolation

67

67
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Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 536 -54% 4%

Even 12 705 -29% 4%

Even 18 1055 -17% 3%

Even 24 1171 -7% 2%

Rising Stage 6 536 -48% 4%

Rising Stage 12 1105 -15% 4%

Rising Stage 18 1163 -3% 3%

Rising Stage 24 1407 3% 3%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 549 -51% 5%

Even 12 947 -11% 4%

Even 18 1150 0% 3%

Even 24 1272 3% 1%

Rising Stage 6 585 -46% 6%

Rising Stage 12 1381 15% 5%

Rising Stage 18 1430 11% 3%

Rising Stage 24 1443 8% 3%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 551 -51% 6%

Even 12 1185 -10% 6%

Even 18 1337 15% 6%

Even 24 1592 18% 4%

Rising Stage 6 565 -43% 7%

Rising Stage 12 1739 33% 8%

Rising Stage 18 1594 35% 5%

Rising Stage 24 1836 32% 5%

Simple Mean

Table C.2e. Summary of within-storm suspended sediment loads (g) at Zone 4 Line A 

determined using three mass emission estimators. Flow-based storm selection criteria.

1244

Linear Interpolation

1244

1244

Flow-weighted Mean

 
 



DRAFT – FINAL 

 58 

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 328 -43% 4%

Even 12 590 -11% 6%

Even 18 643 -6% 5%

Even 24 662 2% 6%

Rising Stage 6 342 -38% 4%

Rising Stage 12 673 -1% 7%

Rising Stage 18 791 8% 7%

Rising Stage 24 741 10% 7%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 351 -35% 4%

Even 12 682 4% 4%

Even 18 653 4% 3%

Even 24 640 4% 3%

Rising Stage 6 351 -29% 7%

Rising Stage 12 956 19% 5%

Rising Stage 18 745 15% 3%

Rising Stage 24 655 9% 3%

Emphasis Sample Size

Median "Best 

Estimate" Load

Median 

Load

Median 

Bias St. Error

Even 6 353 -34% 6%

Even 12 709 13% 7%

Even 18 768 22% 5%

Even 24 820 21% 6%

Rising Stage 6 353 -27% 7%

Rising Stage 12 918 37% 7%

Rising Stage 18 890 36% 7%

Rising Stage 24 811 34% 7%

653

653

Flow-weighted Mean

653

Linear Interpolation

Simple Mean

Table C.2f. Summary of within-storm suspended sediment loads (g) at Zone 4 Line A 

determined using three mass emission estimators. Turbidity-based storm selection criteria.
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Appendix D. Among-storm sampling designs (turbidity-based sampling) 

 

Results are presented here for among-storm sampling designs with turbidity-based storm 

sampling. These results were generally more variable than the flow-based results 

presented in the main text of the report. 

 

 

Figure Captions 

 

Figure  D.1a-c. Comparison of annual Hg loads at Guadalupe River in 2003-2005 based 

on three designs for sampling among storms (Table 5). Loads were calculated using 

linear interpolation with turbidity-based storm selection criteria. Design A simulated 

sampling of the first flush only and a variable number of random storms. Design B 

simulated the first flush plus one of the three largest storms and a variable number of 

random storms. Design C only tested the random storm component. --------- = best 

estimate Hg load for year 

 

Figure D.2a-c. Comparison of annual PCB loads at Guadalupe River in 2003-2005 based 

on three designs for sampling among storms (Table 5).  See Figure D.1 caption and text 

for further information.  --------- = best estimate PCB load for year. 

 

Figure D.3a-c. Comparison of annual SS loads at Guadalupe River in 2003-2005 based 

on three designs for sampling among storms (Table 5).  See Figure D.1 caption and text 

for further information.  --------- = best estimate SS load for year. 

 

Figure  D.4a-c. Comparison of annual Hg loads at Zone 4 Line A in 2007 and 2009 based 

on three designs for sampling among storms (Table 5).  See Figure D.1 caption and text 

for further information.  --------- = best estimate Hg load for year. 

 

Figure  D.5a-c. Comparison of annual PCB loads at Zone 4 Line A in 2007 and 2009 

based on three designs for sampling among storms (Table 5).  See Figure D.1 caption and 

text for further information.  --------- = best estimate PCB load for year. 

 

Figure D.6a-c. Comparison of annual SS loads at Zone 4 Line A in 2007 and 2009 based 

on three designs for sampling among storms (Table 5).  See Figure D.1 caption and text 

for further information.  --------- = best estimate SS load for year. 
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a) 2003 

 
 

b) 2004 

 
 

 

c) 2005 

 
Figure D.1a-c  



DRAFT – FINAL 

 61 

a) 2003 

 
 

b) 2004 

 
 

c) 2005 

 
 

Figure D.2a-c  
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Figure D.3a-c
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Figure D.4a-b 
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Figure D.5a-b 

 

 

 

 

 

 

 

 

 

 

 



DRAFT – FINAL 

 65 

 

 

 

a) 2007 

 
 

b) 2009 

 
Figure D.6a-b 
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Appendix E. Comparison of annual PCB and SS loads at Guadalupe River in 2003 – 

2005 based on three designs for sampling among storms. 

 

Results for estimation of annual PCB and SS loads at Guadalupe River mirrored that of 

Hg loads. Accuracy and precision were optimal at 6 or 10 storms samples per water year. 

Designs A and B performed the best and similarly well, with Design C exhibiting good 

accuracy, but poor precision. 

 

 

Figure Captions 

 

Figure  E.1a-c. Comparison of annual PCB loads at Guadalupe River in 2003-2005 based 

on three designs for sampling among storms (Table 5). Loads were calculated using 

linear interpolation with flow-based storm selection criteria. In addition to the random 

component, Designs A and B simulated sampling of the first flush (A) and first flush plus 

one of the three largest storms (B). Design C only tested the random storm component.  

--------- = best estimate PCB load for year (0.9 kg, 0.5 kg, and 0.5 kg, respectively). 

 
Figure  E.2a-c. Comparison of annual SS loads at Guadalupe River in 2003-2005 based 

on three designs for sampling among storms (Table 5). Loads were calculated using 

linear interpolation with flow-based storm selection criteria. In addition to the random 

component, Designs A and B simulated sampling of the first flush (A) and first flush plus 

one of the three largest storms (B). Design C only tested the random storm component.  

--------- = best estimate SS load for year (10 x 10
6 
kg, 8 x 10

6 
kg, and 4 x 10

6 
kg, 

respectively) 
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Figure 1a-c.  
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Figure 2a-c. 

 


