2018
Baumgarten, S.; Clark, E.; Dusterhoff, S.; Grossinger, R. M.; Askevold, R. A. 2018. Petaluma Valley Historical Hydrology and Ecology Study. SFEI Contribution No. 861. San Francisco Estuary Institute: Richmond, CA.

This study reconstructs the historical landscape of the Petaluma River watershed and documents the major landscape changes that have taken place within the watershed over the past two centuries. Prior to Spanish and American settlement of the region, the Petaluma River watershed supported a dynamic and interconnected network of streams, riparian forests, freshwater wetlands, and tidal marshes. These habitats were utilized by a wide range of plant and animal species, including a number of species that are today listed as threatened or endangered such as Ridgway’s Rail, Black Rail, salt marsh harvest mouse, California red-legged frog, Central California Coast steelhead, and soft bird’s beak (CNDDB 2012, SRCD 2015). Agricultural and urban development beginning in the mid-1800s has significantly altered the landscape, degrading habitat for fish and wildlife and contributing to contemporary management challenges such as flooding, pollutant loading, erosion, and sedimentation. While many natural areas and remnant wetlands still exist throughout the watershed—most notably the Petaluma Marsh—their ecological function is in many cases seriously impaired and their long-term fate jeopardized by climate change and other stressors. Multi-benefit wetland restoration strategies, guided by a thorough understanding of landscape history, can simultaneously address a range of chronic management issues while improving the ecological health of the watershed, making it a better place to live for both people and wildlife.

 (121.7 MB) (43.68 MB)
McKnight, K.; Dusterhoff, S. D.; Grossinger, R. M.; Askevold, R. A. 2018. Resilient Landscape Vision for the Calabazas Creek, San Tomas Aquino Creek, and Pond A8 Area: Bayland-Creek Reconnection Opportunities. SFEI Contribution No. 870. San Francisco Estuary Institute-Aquatic Science Center: Richmond, CA. p 40.

This report proposes a multi-faceted redesign of the South San Francisco Bay shoreline at the interface with Calabazas and San Tomas Aquino creeks. Recognizing the opportunities presented by changing land use and new challenges, such as accelerated sea-level rise, we explore in this report a reconfigured shoreline that could improve ecosystem health and resilience, reduce maintenance costs, and protect surrounding infrastructure.

 (68.63 MB) (20.14 MB)
Schoellhamer, D.; McKee, L.; Pearce, S.; Kauhanen, P.; Salomon, M.; Dusterhoff, S.; Grenier, L.; Marineau, M.; Trowbridge, P. 2018. Sediment Supply to San Francisco Bay. SFEI Contribution No. 842. San Francisco Estuary Institute : Richmond, CA.
 (2.35 MB)
2017
Dusterhoff, S.; Pearce, S.; McKee, L. J. .; Doehring, C.; Beagle, J.; McKnight, K.; Grossinger, R.; Askevold, R. A. 2017. Changing Channels: Regional Information for Developing Multi-benefit Flood Control Channels at the Bay Interface. Flood Control 2.0. SFEI Contribution No. 801. San Francisco Estuary Institute: Richmond, CA.

Over the past 200 years, many of the channels that drain to San Francisco Bay have been modified for land reclamation and flood management. The local agencies that oversee these channels are seeking new management approaches that provide multiple benefits and promote landscape resilience. This includes channel redesign to improve natural sediment transport to downstream bayland habitats and beneficial re-use of dredged sediment for building and sustaining baylands as sea level continues to rise under a changing climate. Flood Control 2.0 is a regional project that was created to help develop innovative approaches for integrating habitat improvement and resilience into flood risk management at the Bay interface. Through a series of technical, economic, and regulatory analyses, the project addresses some of the major elements associated with multi-benefit channel design and management at the Bay interface and provides critical information that can be used by the management and restoration communities to develop long-term solutions that benefit people and wildlife.

This Flood Control 2.0 report provides a regional analysis of morphologic change and sediment dynamics in flood control channels at the Bay interface, and multi-benefit management concepts aimed at bringing habitat restoration into flood risk management. The findings presented here are built on a synthesis of historical and contemporary data that included input from Flood Control 2.0 project scientists, project partners, and science advisors. The results and recommendations, summarized below, will help operationalize many of the recommendations put forth in the Baylands Ecosystem Habitat Goals Science Update (Goals Project 2015) and support better alignment of management and restoration communities on multi-benefit bayland management approaches.

 (62.69 MB) (23.02 MB)
2016
Robinson, A.; Safran, S. M.; Beagle, J.; Grenier, J. Letitia; Grossinger, R. M.; Spotswood, E.; Dusterhoff, S. D.; Richey, A. 2016. A Delta Renewed: A Guide to Science-Based Ecological Restoration in the Sacramento-San Joaquin Delta. Delta Landscapes Project. Prepared for the California Department of Fish and Wildlife and Ecosystem Restoration Program. A Report of SFEI-ASC’s Resilient Landscapes Program. SFEI Contribution No. 799. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA.

This report offers guidance for creating and maintaining landscapes in the Sacramento-San Joaquin Delta that support desired ecological functions, while retaining the overall agricultural character and water-supply service of the region. Based on extensive research into how the Delta functioned historically, how it has changed, and how it is likely to evolve, we discuss where and how to re-establish the dynamic natural processes that can sustain native Delta habitats and wildlife into the future. The approach, building on work others have piloted and championed, is to restore or emulate natural processes where possible, establish an appropriate mosaic of habitat types at the landscape scale, use multi-benefit management strategies to increase support for native species in agricultural and urban areas, and allow the Delta to adapt to future uncertainties of climate change, levee failure, and human population growth. With this approach, it will be critical to integrate ecological improvements with the human landscape: a robust agricultural economy, water infrastructure and diversions, and urbanized areas. Strategic restoration that builds on the history and ecology of the region can contribute to the strong sense of place and recreational value of the Delta.

Printed copies of the report are available for purchase.

 

 (121.28 MB) (17.67 MB)
Dusterhoff, S. D.; Doehring, C.; Baumgarten, S.; Grossinger, R. M.; Askevold, R. A. 2016. Resilient Landscape Vision for Lower Walnut Creek: Baseline Information and Management Strategies. Flood Control 2.0. An SFEI-ASC Resilient Landscape Program report developed in cooperation with the Flood Control 2.0 Regional Science Advisors and Contra Costa County Flood Control and Water Conservation District. SFEI Contribution No. 782. San Francisco Estuary Institute-Aquatic Science Center: Richmond, CA.

Lower Walnut Creek (Contra Costa County, CA) and its surrounding landscape have undergone considerable land reclamation and development since the mid-nineteenth century. In 1965, the lower 22 miles of Walnut Creek and the lower reaches of major tributaries were converted to flood control channels to protect the surrounding developed land. In the recent past, sediment was periodically removed from the lower Walnut Creek Flood Control Channel to provide flow capacity and necessary flood protection. Due to the wildlife impacts and costs associated with this practice, the Contra Costa County Flood Control and Water Conservation District (District) is now seeking a new channel management approach that works with natural processes and benefits people and wildlife in a cost-effective manner. Flood Control 2.0 project scientists and a Regional Science Advisory Team (RSAT) worked with the District to develop a long-term management Vision for lower Walnut Creek that could result in a multi-benefit landscape that restores lost habitat and is resilient under a changing climate.

 (17.42 MB) (44.8 MB)
Salomon, M.; Dusterhoff, S. D.; Askevold, R. A.; Grossinger, R. M. 2016. San Francisquito Creek Baylands: Landscape Change Metrics Analysis. Flood Control 2.0. SFEI Contribution No. 784. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA. p 12.

Major Findings
Over the past 150 years, lower San Francisquito Creek and the adjacent baylands have been modified for the sake of land reclamation and flood control. This study focused on developing an understanding of the magnitude of habitat change since the mid-19th century through comparisons of key historical and contemporary landscape-scale habitat features, as well as several key landscape metrics that relate to ecological functions and landscape resilience. The major findings from the analyses conducted for this study are as follows:
• Historically, the San Francisquito Creek Baylands included a mosaic of habitat types, including an extensive tidal marsh plain with salt pannes and an expansive tidal channel network, a broad bay flat, and a relatively wide contiguous low-gradient tidal-terrestrial transition zone.
• Since the late 19th century, a combination of land reclamation and the inland migration of the shoreline has resulted in a 55% decrease in tidal marsh area, a 67% decrease in total tidal channel length, a 40% reduction in channel flat area, a 20% increase in bay flat area, and a 95% decrease in tidal-terrestrial transition zone length.
• Land reclamation has also resulted in the creation of new features that did not exist in the area historically including tidal lagoons, non-tidal open water features, and non-tidal wetlands.
 

Recommendations
The findings from this study provide insight into the drivers for and magnitude of habitat change within the San Francisquito Creek Baylands, and can therefore help inform climate-resilient approaches for regaining some of the lost landscape features and ecological functions. Specific management recommendations developed from the study findings are as follows:
• The dramatic decrease in tidal marsh area and associated tidal channel length since the mid-1800s make tidal marsh restoration a high priority. To make restored areas sustainable over the long-term, restoration should include reestablishing regular tidal inundation as well as reestablishing a connection with San Francisquito Creek and the delivery of freshwater and fine sediment. Restoration efforts should focus on large contiguous areas with minimal infrastructure and should ideally be done sometime over the next decade to ensure the restored areas will have a chance of surviving the sharp increase in the rate of sea level rise that is predicted to occur around 2030 (Goals Update 2015).
• Similarly, the dramatic decrease in the tidal-terrestrial transition zone makes it a high priority for any restoration vision for this area. The transition zone provides distinct ecological services and marsh migration space, and is in need of restoration throughout the South Bay. Since most of the upland land along the historical tidal-terrestrial transition zone is currently developed, near-term restoration efforts should focus on creating transition zone habitats on the bayside of flood risk management levees (Goals Update 2015).
• The landscape metrics used in this study (tidal habitat area, tidal channel length, and tidal-terrestrial interface length) can be used to help design resilient landscape restoration and adaptation strategies around the mouth of San Francisquito Creek. Specifically, the metrics can be used to assess the long-term ecological benefit associated with various processes-based restoration approaches (i.e., approaches that create habitat features and establish physical processes required for habitat resilience). Additional useful landscape metrics are being developed as part of the Resilient Silicon Valley project (see Robinson et al. 2015).

 (6.19 MB)
2015
Salomon, M.; Baumgarten, S.; Dusterhoff, S. D.; Beller, E. E.; Askevold, R. A. 2015. Novato Creek Baylands Historical Ecology Study. SFEI Contribution No. 740. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA.

Project Background

Over the past century and a half, lower Novato Creek and the surrounding tidal wetlands have been heavily modified for flood control and land reclamation purposes. Levees were built in the tidal portion of the mainstem channel beginning in the late 1800s to convey flood flows out to San Pablo Bay more rapidly and to remove surrounding areas from inundation. Following levee construction, the wetlands surrounding the channel were drained and converted to agricultural, residential, and industrial areas. These changes have resulted in a considerable loss of wetland habitat, reduced sediment transport to marshes and the Bay, and an overall decreased resilience of the system to sea level rise.
In addition to tidal wetland modification, land use changes upstream in the Novato Creek watershed have resulted in several challenges for flood control management. Dam construction and increased runoff in the upper watershed have resulted in elevated rates of channel incision, which have increased transport of fine sediment from the upper watershed to lower Novato Creek. Channelization of tributaries and construction of irrigation ditches have likely increased drainage density in the upper watershed, also potentially contributing to increased rates of channel incision and fine sediment production (Collins 1998). Downstream, sediment transport capacity has been reduced by construction of a railroad crossing and loss of tidal prism and channel capacity associated with the diking of the surrounding marsh. As a result of the increased fine sediment supply from the watershed and the loss of sediment transport capacity in lower Novato Creek, sediment aggradation occurs within the channel, which in turn reduces the flood capacity of the channel, necessitating periodic dredging.

Currently, the Marin County Department of Public Works (MCDPW) is coordinating the Novato Watershed Program, which includes Marin County Flood Control and Water Conservation District, Novato Sanitary District, and North Marin Water District. Within lower Novato Creek, the Program is seeking to implement a new approach to flood control that includes redirecting sediment for beneficial use, reducing flood channel maintenance costs, restoring wetland habitat, and enhancing resilience to sea level rise. Included as part of this goal is the re-establishment of historical physical processes that existed before major channel modification, which in turn will re-establish historical ecological functions and help to create a tidal landscape that is resilient to increasing sea level.

 (27.13 MB)
Grossinger, R. M.; Dusterhoff, S. D.; Doehring, C.; Salomon, M.; Askevold, R. A. 2015. Novato Creek Baylands Vision: Integrating ecological functions and flood protection within a climate-resilient landscape. SFEI Contribution No. 764.

This report explores the potential for integrating ecological functions into flood risk management on lower Novato Creek. It presents an initial vision of how ecological elements could contribute to flood protection, based on a broad scale analysis and a one day workshop of local and regional experts. The Vision is not intended to be implemented as is, but rather adapted and applied through future projects and analysis. Other actions (e.g., floodwater detention basins) may also need to be implemented in the interim to meet flood risk objectives.

 (21.5 MB)
2014
 (9.78 MB)
Dusterhoff, S. D.; Doehring, C.; Shusterman, G. 2014. How Creeks Meet the Bay: Changing Interfaces (Interactive web map).

San Francisco Bay’s connections to local creeks are integral to its health. These fluvial-tidal (F-T) interfaces are the points of delivery for freshwater, sediment, contaminants, and nutrients. The ways in which the F-T interface has changed affect flooding dynamics, ecosystem functioning, and resilience to a changing climate. As the historical baylands have been altered, the majority of contemporary F-T interface types have changed leading to additional F-T interface types within the present-day landscape. Illustrations of each F-T interface type and methods for classification are available here

This project is part of Flood Control 2.0. For further information please visit this project page

 (8.39 MB)
Beller, E. E.; Baumgarten, S.; Grossinger, R. M.; Longcore, T.; Stein, E. D.; Dark, S.; Dusterhoff, S. D. 2014. Northern San Diego County Lagoons Historical Ecology Investigation. SFEI Contribution No. 722. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA. p 215.
 (305.02 MB) (50.9 MB)
 (3.81 MB)