Export 13 results:
Filters: Author is Erica Spotswood
2021
Spotswood, E.; Beller, E. E.; Grossinger, R. M.; Grenier, L.; Heller, N.; Aronson, M. 2021. The biological deserts fallacy: Cities in their landscapes contribute more than we think to regional biodiversity. BioScience 71 (2) . SFEI Contribution No. 1031.

Cities are both embedded within and ecologically linked to their surrounding landscapes. Although urbanization poses a substantial threat to biodiversity, cities also support many species, some of which have larger populations, faster growth rates, and higher productivity in cities than outside of them. Despite this fact, surprisingly little attention has been paid to the potentially beneficial links between cities and their surroundings.

We identify five pathways by which cities can benefit regional ecosystems by releasing species from threats in the larger landscape, increasing regional habitat heterogeneity and genetic diversity, acting as migratory stopovers, preadapting species to climate change, and enhancing public engagement and environmental stewardship. Increasing recognition of these pathways could help cities identify effective strategies for supporting regional biodiversity conservation and could provide a science-based platform for incorporating biodiversity alongside other urban greening goals.

 (781.56 KB)
Panlasigui, S.; Spotswood, E.; Beller, E.; Grossinger, R. 2021. Biophilia beyond the Building: Applying the Tools of Urban Biodiversity Planning to Create Biophilic Cities. Sustainability 13 (5).

In response to the widely recognized negative impacts of urbanization on biodiversity, many cities are reimagining urban design to provide better biodiversity support. Some cities have developed urban biodiversity plans, primarily focused on improving biodiversity support and ecosystem function within the built environment through habitat restoration and other types of urban greening projects. The biophilic cities movement seeks to reframe nature as essential infrastructure for cities, seamlessly integrating city and nature to provide abundant, accessible nature for all residents and corresponding health and well-being outcomes. Urban biodiversity planning and biophilic cities have significant synergies in their goals and the means necessary to achieve them. In this paper, we identify three key ways by which the urban biodiversity planning process can support biophilic cities objectives: engaging the local community; identifying science-based, quantitative goals; and setting priorities for action. Urban biodiversity planning provides evidence-based guidance, tools, and techniques needed to design locally appropriate, pragmatic habitat enhancements that support biodiversity, ecological health, and human health and well-being. Developing these multi-functional, multi-benefit strategies that increase the abundance of biodiverse nature in cities has the potential at the same time to deepen and enrich our biophilic experience in daily life.

 (7.42 MB)
Spotswood, E.; Benjamin, M.; Stoneburner, L.; Wheeler, M. 2021. Nature inequity and higher COVID-19 case rates in less green neighbourhoods in the United States. Nature Sustainability 4 (10).

Nature inequity and higher COVID-19 case rates in less green neighbourhoods in the United StatesUrban nature—such as greenness and parks—can alleviate distress and provide space for safe recreation during the COVID-19 pandemic. However, nature is often less available in low-income populations and communities of colour—the same communities hardest hit by COVID-19. In analyses of two datasets, we quantified inequity in greenness and park proximity across all urbanized areas in the United States and linked greenness and park access to COVID-19 case rates for ZIP codes in 17 states. Areas with majority persons of colour had both higher case rates and less greenness. Furthermore, when controlling for sociodemographic variables, an increase of 0.1 in the Normalized Difference Vegetation Index was associated with a 4.1% decrease in COVID-19 incidence rates (95% confidence interval: 0.9–6.8%). Across the United States, block groups with lower-income and majority persons of colour are less green and have fewer parks. Our results demonstrate that the communities most impacted by COVID-19 also have the least nature nearby. Given that urban nature is associated with both human health and biodiversity, these results have far-reaching implications both during and beyond the pandemic.

Related data: https://www.sfei.org/data/nature-equity-covid-2021

 

 (204.95 MB) (21.97 MB)
Zi, T.; Whipple, A.; Kauhanen, P.; Spotswood, E.; Grenier, L.; Grossinger, R.; Askevold, R. 2021. Trees and Hydrology in Urban Landscapes. SFEI Contribution No. 1034. San Francisco Estuary Institute: Richmond, CA.

Effective implementation of urban greening strategies is needed to address legacies of landscape change and environmental degradation, ongoing development pressures, and the urgency of the climate crisis. With limited space and resources, these challenges will not be met through single-issue or individual-sector management and planning. Increasingly, local governments, regulatory agencies, and other urban planning organizations in the San Francisco Bay Area are expanding upon the holistic, portfolio-based, and multi-benefit approaches.

This effort, presented in the Trees and Hydrology in Urban Landscapes report, seeks to build links between stormwater management and urban ecological improvements by evaluating how complementary urban greening activities, including green stormwater infrastructure (GSI) and urban tree canopy, can be integrated and improved to reduce runoff and contaminant loads in stormwater systems. This work expands the capacity for evaluating engineered GSI and non-engineered urban greening within a modeling and analysis framework, with a primary focus on evaluating the hydrologic benefit of urban trees. Insights can inform stormwater management policy and planning. 

 (8.97 MB) (20.88 MB)
2020
 (6.35 MB) (88.2 MB)
Grossinger, R. M.; Wheeler, M.; Spotswood, E.; Ndayishimiye, E.; Carbone, G.; Galt, R. 2020. Sports and urban biodiversity. . SFEI Contribution No. 1028.

SFEI collaborated with the International Union for the Conservation of Nature (IUCN) and the International Olympic Committee (IOC) to create a guide to incorporating nature into urban sports, from the development of Olympic cities to the design and management of the many sport fields throughout the urban landscape. We applied the Urban Biodiversity Framework developed in Making Nature’s City to the world of sports, with case studies drawn from international sport federations, Olympic cities, and individual sport teams and venues around the world. The guide is part of IUCN’s ongoing collaboration with IOC to develop best practices around biodiversity for the sporting industry.

Download the report

2019
Spotswood, E.; Grossinger, R.; Hagerty, S.; Bazo, M.; Benjamin, M.; Beller, E.; Grenier, L.; Askevold, R. A. 2019. Making Nature's City. SFEI Contribution No. 947. San Francisco Estuary Institute: Richmond, CA.

Cities will face many challenges over the coming decades, from adapting to a changing climate to accommodating rapid population growth. A related suite of challenges threatens global biodiversity, resulting in many species facing extinction. While urban planners and conservationists have long treated these issues as distinct, there is growing evidence that cities not only harbor a significant fraction of the world’s biodiversity, but also that they can also be made more livable and resilient for people, plants, and animals through nature-friendly urban design. 

Urban ecological science can provide a powerful tool to guide cities towards more biodiversity-friendly design. However, current research remains scattered across thousands of journal articles and is largely inaccessible to practitioners. Our report Making Nature’s City addresses these issues, synthesizing global research to develop a science-based approach for supporting nature in cities. 

Using the framework outlined in the report, urban designers and local residents can work together to connect, improve, and expand upon city greenspaces to better support biodiversity while making cities better places to live. As we envision healthier and more resilient cities, Making Nature’s City provides practical guidance for the many actors who together will shape the nature of cities.

 (13.03 MB) (10.41 MB) (33.4 MB)
Hagerty, S.; Spotswood, E.; McKnight, K.; Grossinger, R. M. 2019. Urban Ecological Planning Guide for Santa Clara Valley. SFEI Contribution No. 941. San Francisco Estuary Institute: Richmond, CA.

This document provides some of the scientific foundation needed to guide planning for urban biodiversity in the Santa Clara Valley region, grounded in an understanding of landscape history, urban ecology and local setting. It can be used to envision the ecological potential for individual urban greening projects, and to guide their siting, design and implementation. It also can be used to guide coordination of projects across the landscape, with the cooperation of a group of stakeholders (such as multiple agencies, cities and counties). Users of this report may include a wide range of entities, such as local nonprofits, public agencies, city planners, and applicants to the Open Space Authority’s Urban Open Space Grant Program.
 (42.6 MB)
2018
Beller, E. E.; Spotswood, E.; Robinson, A.; Anderson, M. G.; Higgs, E. S.; Hobbs, R. J.; Suding, K. N.; Zavaleta, E. S.; Grenier, L.; Grossinger, R. M. 2018. Building Ecological Resilience in Highly Modified Landscapes.

Ecological resilience is a powerful heuristic for ecosystem management in the context of rapid environmental change. Significant efforts are underway to improve the resilience of biodiversity and ecological function to extreme events and directional change across all types of landscapes, from intact natural systems to highly modified landscapes such as cities and agricultural regions. However, identifying management strategies likely to promote ecological resilience remains a challenge. In this article, we present seven core dimensions to guide long-term and large-scale resilience planning in highly modified landscapes, with the objective of providing a structure and shared vocabulary for recognizing opportunities and actions likely to increase resilience across the whole landscape. We illustrate application of our approach to landscape-scale ecosystem management through case studies from two highly modified California landscapes, Silicon Valley and the Sacramento–San Joaquin Delta. We propose that resilience-based management is best implemented at large spatial scales and through collaborative, cross-sector partnerships.

 (4.93 MB)
2017
Spotswood, E.; Grossinger, R. M.; Hagerty, S.; Beller, E. E.; Grenier, J. Letitia; Askevold, R. A. 2017. Re-Oaking Silicon Valley: Building Vibrant Cities with Nature. SFEI Contribution No. 825. San Francisco Estuary Institute: Richmond, CA.

In this report, we investigate how re-integrating components of oak woodlands into developed landscapes — “re-oaking” — can provide an array of valuable functions for both wildlife and people. Re-oaking can increase the biodiversity and ecological resilience of urban ecosystems, improve critical urban forest functions such as shade and carbon storage, and enhance the capacity of cities to adapt to a changing climate. We focus on Silicon Valley, where oak woodland replacement by agriculture and urbanization tells a story that has occurred in many other cities in California. We highlight how the history and ecology of the Silicon Valley landscape can be used as a guide to plan more ecologically-resilient cities in the Bay Area, within the region and elsewhere in California. We see re-oaking as part of, and not a substitute for, the important and broader oak woodland conservation efforts taking place throughout the state.

 (65.64 MB) (31.88 MB)
2016
Robinson, A.; Safran, S. M.; Beagle, J.; Grenier, J. Letitia; Grossinger, R. M.; Spotswood, E.; Dusterhoff, S. D.; Richey, A. 2016. A Delta Renewed: A Guide to Science-Based Ecological Restoration in the Sacramento-San Joaquin Delta. Delta Landscapes Project. Prepared for the California Department of Fish and Wildlife and Ecosystem Restoration Program. A Report of SFEI-ASC’s Resilient Landscapes Program. SFEI Contribution No. 799. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA.

This report offers guidance for creating and maintaining landscapes in the Sacramento-San Joaquin Delta that support desired ecological functions, while retaining the overall agricultural character and water-supply service of the region. Based on extensive research into how the Delta functioned historically, how it has changed, and how it is likely to evolve, we discuss where and how to re-establish the dynamic natural processes that can sustain native Delta habitats and wildlife into the future. The approach, building on work others have piloted and championed, is to restore or emulate natural processes where possible, establish an appropriate mosaic of habitat types at the landscape scale, use multi-benefit management strategies to increase support for native species in agricultural and urban areas, and allow the Delta to adapt to future uncertainties of climate change, levee failure, and human population growth. With this approach, it will be critical to integrate ecological improvements with the human landscape: a robust agricultural economy, water infrastructure and diversions, and urbanized areas. Strategic restoration that builds on the history and ecology of the region can contribute to the strong sense of place and recreational value of the Delta.

Printed copies of the report are available for purchase.

 

 (121.28 MB) (17.67 MB)