Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 10 results:
Filters: Author is Steve Hagerty  [Clear All Filters]
2021
 (204.95 MB) (21.97 MB)
2019
Spotswood, E.; Grossinger, R.; Hagerty, S.; Bazo, M.; Benjamin, M.; Beller, E.; Grenier, L.; Askevold, R. A. 2019. Making Nature's City. SFEI Contribution No. 947. San Francisco Estuary Institute: Richmond, CA.

Cities will face many challenges over the coming decades, from adapting to a changing climate to accommodating rapid population growth. A related suite of challenges threatens global biodiversity, resulting in many species facing extinction. While urban planners and conservationists have long treated these issues as distinct, there is growing evidence that cities not only harbor a significant fraction of the world’s biodiversity, but also that they can also be made more livable and resilient for people, plants, and animals through nature-friendly urban design. 

Urban ecological science can provide a powerful tool to guide cities towards more biodiversity-friendly design. However, current research remains scattered across thousands of journal articles and is largely inaccessible to practitioners. Our report Making Nature’s City addresses these issues, synthesizing global research to develop a science-based approach for supporting nature in cities. 

Using the framework outlined in the report, urban designers and local residents can work together to connect, improve, and expand upon city greenspaces to better support biodiversity while making cities better places to live. As we envision healthier and more resilient cities, Making Nature’s City provides practical guidance for the many actors who together will shape the nature of cities.

 (13.03 MB) (10.41 MB) (33.4 MB)
Hagerty, S.; Spotswood, E.; McKnight, K.; Grossinger, R. M. 2019. Urban Ecological Planning Guide for Santa Clara Valley. SFEI Contribution No. 941. San Francisco Estuary Institute: Richmond, CA.

This document provides some of the scientific foundation needed to guide planning for urban biodiversity in the Santa Clara Valley region, grounded in an understanding of landscape history, urban ecology and local setting. It can be used to envision the ecological potential for individual urban greening projects, and to guide their siting, design and implementation. It also can be used to guide coordination of projects across the landscape, with the cooperation of a group of stakeholders (such as multiple agencies, cities and counties). Users of this report may include a wide range of entities, such as local nonprofits, public agencies, city planners, and applicants to the Open Space Authority’s Urban Open Space Grant Program.
 (42.6 MB)
2018
 (8.44 MB)
Richey, A.; Dusterhoff, S. D.; McKnight, K.; Salomon, M.; Hagerty, S.; Askevold, R. A.; Grossinger, R. M. 2018. Resilient Landscape Vision for Upper Penitencia Creek. SFEI Contribution No. 894. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA.
 (67.6 MB) (11.75 MB)
 (1.22 MB)
Safran, S. M.; Hagerty, S.; Robinson, A.; Grenier, L. 2018. Translating Science-Based Restoration Strategies into Spatially-Explicit Restoration Opportunities in the Delta (2018 Bay-Delta Science Conference Presentation).

In a previous report titled “A Delta Renewed” we offered a collection of guidelines for science-based ecological restoration in the Sacramento-San Joaquin Delta that emphasized restoring or emulating natural processes, anticipating future changes associated with climate change, establishing appropriate configurations of habitat types at the landscape scale, and utilizing a variety multi-benefit management strategies. In this talk, we present on our recent work to support regional restoration planning efforts by developing a repeatable process for using these guidelines to identify spatially-explicit restoration opportunities. The process is largely GIS-based and utilizes spatial data on existing land cover and conservation status, habitat configuration (including patch sizes and distances), surface elevations (including depth of subsidence), and future changes in tidal elevations associated with sea-level rise.  By distilling generalized guidelines into spatially-explicit opportunities, we hope to provide a practical tool for incorporating science into planning. To that end, these new methods are currently being piloted through planning efforts focused on the Central Delta Corridor and the McCormack Williamson Tract, and are also being used to assist with the quantification of ecological restoration potential in the Delta Plan Ecosystem Amendment.

Presentation recording: available here.

 (3.78 MB)
2017
Spotswood, E.; Grossinger, R. M.; Hagerty, S.; Beller, E. E.; Grenier, J. Letitia; Askevold, R. A. 2017. Re-Oaking Silicon Valley: Building Vibrant Cities with Nature. SFEI Contribution No. 825. San Francisco Estuary Institute: Richmond, CA.

In this report, we investigate how re-integrating components of oak woodlands into developed landscapes — “re-oaking” — can provide an array of valuable functions for both wildlife and people. Re-oaking can increase the biodiversity and ecological resilience of urban ecosystems, improve critical urban forest functions such as shade and carbon storage, and enhance the capacity of cities to adapt to a changing climate. We focus on Silicon Valley, where oak woodland replacement by agriculture and urbanization tells a story that has occurred in many other cities in California. We highlight how the history and ecology of the Silicon Valley landscape can be used as a guide to plan more ecologically-resilient cities in the Bay Area, within the region and elsewhere in California. We see re-oaking as part of, and not a substitute for, the important and broader oak woodland conservation efforts taking place throughout the state.

 (65.64 MB) (31.88 MB)
 (13.8 MB)
Beagle, J.; Richey, A.; Hagerty, S.; Salomon, M.; Askevold, R. A.; Grossinger, R. M.; Reynolds, P.; McClain, C.; Spangler, W.; Quinn, M.; et al. 2017. Sycamore Alluvial Woodland: Habitat Mapping and Regeneration Study. SFEI Contribution No. 816.

This study investigates the relative distribution, health, and regeneration patterns of two major stands of sycamore alluvial woodland (SAW), representing managed and natural settings. Using an array of ecological and geomorphic field analyses, we discuss site characteristics favorable to SAW health and regeneration, make recommendations for restoration and management, and identify next steps. Findings from this study will contribute to the acquisition, restoration, and improved management of SAW as part of the Santa Clara Valley Habitat Plan (VHP).

 (53.95 MB) (21.31 MB)