Zi, T.; Braud, A.; McKee, L. J.; Foley, M. 2022. San Francisco Bay Watershed Dynamic Model (WDM) Progress Report, Phase 2. SFEI Contribution No. 1091. San Francisco Estuary Institute: Richmond, California.

The San Francisco Bay total maximum daily loads (TMDLs) call for a 50% reduction in mercury (Hg) loads by 2028 and a 90% reduction in PCBs loads by 2030. In support of these TMDLs, the Municipal Regional Permit for Stormwater (MRP) (SFBRWQCB, 2009, SFBRWQCB, 2015, SFBRWQCB, 2022) called for the implementation of control measures to reduce PCBs and Hg loads from urbanized tributaries. In addition, the MRP has identified additional information needs associated with improving understanding of sources, pathways, loads, trends, and management opportunities of pollutants of concern (POCs). In response to the MRP requirements and information needs, the Small Tributary Loading Strategy (STLS) was developed, which outlined a set of management questions (MQs) that have been used as the
guiding principles for the region’s stormwater-related activities. In recognition of the need to evaluate changes in loads or concentrations of POCs from small tributaries on a decadal scale, the updated 2018 STLS Trends Strategy (Wu et al., 2018) prioritized the development of a new dynamic regional watershed model for POCs (PCBs and Hg focused) loads and trends. This regional modeling effort will provide updated estimates of POC concentrations and loads for all local watersheds that drain to the Bay. The Watershed Dynamic Model (WDM) will also provide
a mechanism for evaluating the impact of management actions on future trends of POC loads or concentrations.

As a multi-use modeling platform, the WDM is being developed to include other pollutants, such as contaminants of emerging concern (CECs), sediment, and nutrients and to be coupled with a Bay fate model to form an integrated watershed-Bay modeling framework to address Regional Monitoring Program (RMP) management questions. As this model is developed, flexibility to link with other models will be an important consideration.