(13.8 MB)
Safran, S. M.; Baumgarten, S. A.; Beller, E. E.; Crooks, J. A.; Grossinger, R. M.; Lorda, J.; Longcore, T. R.; Bram, D. L.; Dark, S. J.; Stein, E. D.; et al. 2017. Tijuana River Valley Historical Ecology Investigation. Prepared for the State Coastal Conservancy. A Report of SFEI-ASC’s Resilient Landscapes Program. SFEI Contribution No. 760. San Francisco Estuary Institute - Aquatic Science Center : Richmond, CA. p 230.

The Tijuana River Valley Historical Ecology Investigation addresses a regional data gap by reconstructing the landscape and ecosystem characteristics of the river valley prior to the major modifications of the late 19th and 20th centuries. The research presented here, funded by the California State Coastal Conservancy, supplies foundational information at the regional and system scale about how the Tijuana Estuary, River, and valley looked and functioned in the recent past, as well as how they have changed over time. The ultimate goal of this study is to provide a new tool and framework that, in combination with contemporary research and future projections, can support and guide ongoing restoration design, planning, and management efforts in the valley.

 (232.2 MB) (73.63 MB)
Robinson, A.; Safran, S. M.; Beagle, J.; Grenier, J. Letitia; Grossinger, R. M.; Spotswood, E.; Dusterhoff, S. D.; Richey, A. 2016. A Delta Renewed: A Guide to Science-Based Ecological Restoration in the Sacramento-San Joaquin Delta. Delta Landscapes Project. Prepared for the California Department of Fish and Wildlife and Ecosystem Restoration Program. A Report of SFEI-ASC’s Resilient Landscapes Program. SFEI Contribution No. 799. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA.

This report offers guidance for creating and maintaining landscapes in the Sacramento-San Joaquin Delta that support desired ecological functions, while retaining the overall agricultural character and water-supply service of the region. Based on extensive research into how the Delta functioned historically, how it has changed, and how it is likely to evolve, we discuss where and how to re-establish the dynamic natural processes that can sustain native Delta habitats and wildlife into the future. The approach, building on work others have piloted and championed, is to restore or emulate natural processes where possible, establish an appropriate mosaic of habitat types at the landscape scale, use multi-benefit management strategies to increase support for native species in agricultural and urban areas, and allow the Delta to adapt to future uncertainties of climate change, levee failure, and human population growth. With this approach, it will be critical to integrate ecological improvements with the human landscape: a robust agricultural economy, water infrastructure and diversions, and urbanized areas. Strategic restoration that builds on the history and ecology of the region can contribute to the strong sense of place and recreational value of the Delta.

Printed copies of the report are available for purchase.


 (121.28 MB) (17.67 MB)
Safran, S. M.; Grenier, J. Letitia; Grossinger, R. M. 2016. Ecological implications of modeled hydrodynamic changes in the upper San Francisco Estuary: Phase II Technical Memorandum. SFEI Contribution No. 786.

The physical and ecological environment of the upper San Francisco Estuary has been profoundly altered since the early 1800s. Recent efforts have utilized maps of the upper estuary’s historical habitat types to infer associated changes in desired ecosystem processes and functions. The work presented in this memo builds on these previous efforts, but utilizes a new tool for evaluating change over time: a 3D hydrodynamic model of the pre-development estuary. This model was constructed by Resource Management Associates (RMA) using a new digital elevation model of the pre-development upper estuary generated by SFEI and UC Davis (UCD) and “natural” boundary flows calculated by the California Department of Water Resources (CDWR).

Once completed and calibrated, the pre-development model was paired with a similar model of the contemporary system in order to analyze hydrodynamic changes in the upper estuary. These analyses are presented in a technical memorandum published by RMA (2015). This memorandum takes these analyses and considers the ecological implications of modeled changes (see the “Results” section). Hydrodynamic analyses include analyzing changes in tidal prism, isohaline positions, low-salinity zone habitat, channel velocity, and source water distribution.

 In addition to describing the ecological implications of modeled hydrodynamic changes, this memorandum summarizes major ongoing questions about estuarine hydrodynamics that might be explored using these models, including changes in water residence time, temperature, transport pathways, and the connectivity of aquatic and semi-aquatic habitats. Understanding changes in these and other factors would greatly improve our understanding of the desirable ecosystem functions provided by the historical system and, as a result, improve our ability to recover these functions now and into the future.

 (955.14 KB)
 (47.38 MB)
Safran, S. M.; Clark, E.; Beller, E. E.; Grossinger, R. M. 2016. Mission Bay Historical Ecology Reconnaissance Study: Data Collection Summary (Technical Report). SFEI Contribution No. 777.

The goals of the Mission Bay Historical Ecology Reconnaissance Study were to collect and compile high-priority historical
data about the Mission Bay landscape, identify sources that could help to develop a deeper understanding of early
ecological conditions, and to identify future possible research directions based on the available data. This technical
memorandum is intended to document the archives consulted during the reconnaissance study, summarize the collected
and compiled data, and to identify potential next steps. A separate technical presentation to project staff and advisors will
summarize the preliminary findings and questions generated from a review of the historical dataset. Ultimately, this
research is intended to support the San Diego Audubon Society’s Mission Bay Wetlands Conceptual Restoration Plan (CRP)
and the ReWild Mission Bay project.

 (3.44 MB)
Cloern, J. E.; Robinson, A.; Richey, A.; Grenier, J. Letitia; Grossinger, R. M.; Boyer, K. E.; Burau, J.; Canuel, E.; DeGeorge, J. F.; Drexler, J. Z.; et al. 2016. Primary Production in the Delta: Then and Now. San Francisco Estuary and Watershed Science 14 (3).

To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850). Here we describe an approach for using these metrics of land use change to: (1) produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2) convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3) use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.

 (864.19 KB)
Safran, S. M. 2015. The Tijuana River Valley: An Ecological Look into the Past.

Hot springs in the Tijuana River? Antelope by the beach? Zip-lines over the international border?
Come find out what the Tijuana River Valley looked like in the not-so-distant past and how the river, estuary, and surrounding areas have changed over the past two centuries. Hear how researchers “recreated” the historical landscape and how this information helps us to better plan for the future.

 (49.38 MB)
 (8.36 MB)
 (58.56 MB) (11.76 MB)
SFEI; Safran, S. M. 2014. Natural Flow Hydrodynamic Modeling Technology Support Phase 1 Technical Memorandum.

This technical memorandum summarizes the work to date carried out by the San Francisco Estuary Institute (SFEI) to generate a bathymetric-topographic digital elevation model (DEM) of the historical Sacramento-San Joaquin Delta (representative of early 1800s conditions). The historical DEM described in this document is an interim/draft product completed for Phase I of the Bay-Delta Natural Flow Hydrodynamics and Salinity Transport modeling project. It is expected that the product and methods described here will be refined during a second phase of the project.

 (3.13 MB)