Export 9 results:
Filters: Drupal User is Stephanie Panlasigui
2022
Vaughn, L. Smith; Plane, E.; Harris, K.; Robinson, A.; Grenier, L. 2022. Leveraging Wetlands for a Better Climate Future: Incorporating Blue Carbon into California's Climate Planning. SFEI Contribution No. 1084. San Francisco Estuary Institute: Richmond, CA. p 31.

The 2022 update to California’s climate change Scoping Plan incorporates management actions in the state’s forests, shrublands/chaparral, grasslands, croplands, developed lands, deltaic wetlands, and sparsely vegetated lands. Missing from this list are the tidally-influenced coastal ecosystems outside the Sacramento-San Joaquin Delta. These blue carbon ecosystems support high rates of carbon storage and sequestration while providing many co-benefits that can enhance coastal climate change resilience. With sufficient data and robust modeling approaches, California has the opportunity to incorporate blue carbon in future Scoping Plan updates and set actionable targets for restoration, migration space conservation, and other management activities that promote long-term survival of the state’s coastal wetlands. To support this goal, this report offers a high-level overview of the state of the science for blue carbon quantification in California. This summary, which covers datasets and quantification approaches, key focus areas for additional science investment, and example scenarios for coastal wetland restoration, is intended to facilitate broader inclusion of blue carbon in future Scoping Plan updates and other state-level climate-planning documents.

 (9.61 MB)
2021
Spotswood, E.; Beller, E. E.; Grossinger, R. M.; Grenier, L.; Heller, N.; Aronson, M. 2021. The biological deserts fallacy: Cities in their landscapes contribute more than we think to regional biodiversity. BioScience 71 (2) . SFEI Contribution No. 1031.

Cities are both embedded within and ecologically linked to their surrounding landscapes. Although urbanization poses a substantial threat to biodiversity, cities also support many species, some of which have larger populations, faster growth rates, and higher productivity in cities than outside of them. Despite this fact, surprisingly little attention has been paid to the potentially beneficial links between cities and their surroundings.

We identify five pathways by which cities can benefit regional ecosystems by releasing species from threats in the larger landscape, increasing regional habitat heterogeneity and genetic diversity, acting as migratory stopovers, preadapting species to climate change, and enhancing public engagement and environmental stewardship. Increasing recognition of these pathways could help cities identify effective strategies for supporting regional biodiversity conservation and could provide a science-based platform for incorporating biodiversity alongside other urban greening goals.

 (781.56 KB)
Panlasigui, S.; Spotswood, E.; Beller, E.; Grossinger, R. 2021. Biophilia beyond the Building: Applying the Tools of Urban Biodiversity Planning to Create Biophilic Cities. Sustainability 13 (5).

In response to the widely recognized negative impacts of urbanization on biodiversity, many cities are reimagining urban design to provide better biodiversity support. Some cities have developed urban biodiversity plans, primarily focused on improving biodiversity support and ecosystem function within the built environment through habitat restoration and other types of urban greening projects. The biophilic cities movement seeks to reframe nature as essential infrastructure for cities, seamlessly integrating city and nature to provide abundant, accessible nature for all residents and corresponding health and well-being outcomes. Urban biodiversity planning and biophilic cities have significant synergies in their goals and the means necessary to achieve them. In this paper, we identify three key ways by which the urban biodiversity planning process can support biophilic cities objectives: engaging the local community; identifying science-based, quantitative goals; and setting priorities for action. Urban biodiversity planning provides evidence-based guidance, tools, and techniques needed to design locally appropriate, pragmatic habitat enhancements that support biodiversity, ecological health, and human health and well-being. Developing these multi-functional, multi-benefit strategies that increase the abundance of biodiverse nature in cities has the potential at the same time to deepen and enrich our biophilic experience in daily life.

 (7.42 MB)
Panlasigui, S.; Baumgarten, S.; Spotswood, E. 2021. E-Bikes and Open Space: The Current State of Research and Management Recommendations. SFEI Contribution No. 1064. San Francisco Estuary Institute: Richmond, CA.
 (2.99 MB)
 (9.33 MB)
Iknayan, K.; Wheeler, M.; Safran, S. M.; Young, J. S.; Spotswood, E. 2021. What makes urban parks good for California quail? Evaluating park suitability, species persistence, and the potential for reintroduction into a large urban national park. Journal of Applied Ecology.

  1. Preserving and restoring wildlife in urban areas benefits both urban ecosystems and the well-being of urban residents. While urban wildlife conservation is a rapidly developing field, the majority of conservation research has been performed in wildland areas. Understanding the applicability of wildland science to urban populations and the relative importance of factors limiting species persistence are of critical importance to identifying prescriptive management strategies for restoring wildlife to urban parks.
  2. We evaluated how habitat fragmentation, habitat quality and mortality threats influence species occupancy and persistence in urban parks. We chose California quail Callipepla californica as a representative species with potential to respond to urban conservation. We used publicly available eBird data to construct occupancy models of quail in urban parks across their native range, and present an application using focal parks interested in exploring quail reintroduction.
  3. Urban parks had a 0.23 ± 0.02 probability of quail occupancy, with greater occupancy in larger parks that were less isolated from potential source populations, had higher shrub cover and had lower impervious cover. Less isolated parks had higher colonization rates, while larger parks had lower extinction rates. These results align with findings across urban ecology showing greater biodiversity in larger and more highly connected habitat patches.
  4. A case study highlighted that interventions to increase effective park size and improve connectivity would be most influential for two highly urban focal parks, while changes to internal land cover would have a relatively small impact. Low joint extinction probability in the parks (0.010 ± 0.013) indicated reintroduced populations could persist for some time.
  5. Synthesis and applications. We show how eBird data can be harnessed to evaluate the responsiveness of wildlife to urban parks of variable size, connectivity and habitat quality, highlighting what management actions are most needed. Using California quail as an example, we found park size, park isolation and presence of coyotes are all important drivers of whether quail can colonize and persist in parks. Our results suggest reintroducing quail to parks could be successful provided parks are large enough to support quail, and management actions are taken to enhance regional connectivity or periodic assisted colonization is used to supplement local populations.
 (2.33 MB)