Export 26 results:
Filters: Author is Matt Quinn  [Clear All Filters]
2019
Beagle, J.; Lowe, J.; McKnight, K.; Safran, S. M.; Tam, L.; Szambelan, S. Jo. 2019. San Francisco Bay Shoreline Adaptation Atlas: Working with Nature to Plan for Sea Level Rise Using Operational Landscape Units. SFEI Contribution No. 915. SFEI & SPUR: Richmond, CA. p 255.

As the climate continues to change, San Francisco Bay shoreline communities will need to adapt in order to build social and ecological resilience to rising sea levels. Given the complex and varied nature of the Bay shore, a science-based framework is essential to identify effective adaptation strategies that are appropriate for their particular settings and that take advantage of natural processes. This report proposes such a framework—Operational Landscape Units for San Francisco Bay.

Printed copies available for purchase from Amazon.

 (259.64 MB) (84.6 MB) (20.93 MB)
 (6.2 MB)
2017
Dusterhoff, S.; Pearce, S.; McKee, L. J. .; Doehring, C.; Beagle, J.; McKnight, K.; Grossinger, R.; Askevold, R. A. 2017. Changing Channels: Regional Information for Developing Multi-benefit Flood Control Channels at the Bay Interface. Flood Control 2.0. SFEI Contribution No. 801. San Francisco Estuary Institute: Richmond, CA.

Over the past 200 years, many of the channels that drain to San Francisco Bay have been modified for land reclamation and flood management. The local agencies that oversee these channels are seeking new management approaches that provide multiple benefits and promote landscape resilience. This includes channel redesign to improve natural sediment transport to downstream bayland habitats and beneficial re-use of dredged sediment for building and sustaining baylands as sea level continues to rise under a changing climate. Flood Control 2.0 is a regional project that was created to help develop innovative approaches for integrating habitat improvement and resilience into flood risk management at the Bay interface. Through a series of technical, economic, and regulatory analyses, the project addresses some of the major elements associated with multi-benefit channel design and management at the Bay interface and provides critical information that can be used by the management and restoration communities to develop long-term solutions that benefit people and wildlife.

This Flood Control 2.0 report provides a regional analysis of morphologic change and sediment dynamics in flood control channels at the Bay interface, and multi-benefit management concepts aimed at bringing habitat restoration into flood risk management. The findings presented here are built on a synthesis of historical and contemporary data that included input from Flood Control 2.0 project scientists, project partners, and science advisors. The results and recommendations, summarized below, will help operationalize many of the recommendations put forth in the Baylands Ecosystem Habitat Goals Science Update (Goals Project 2015) and support better alignment of management and restoration communities on multi-benefit bayland management approaches.

 (62.69 MB) (23.02 MB)
Robinson, A.; Beagle, J.; Safran, S. M.; McKnight, K.; Grenier, J. Letitia; Askevold, R. A. 2017. Delta Landscapes: A Delta Renewed User Guide. SFEI Contribution No. 854.

A Delta Renewed User Guide aims to increase the accessibility of the technical findings in A Delta Renewed for easier application to restoration and conservation efforts across the Delta. The recommendations in A Delta Renewed focus on landscape-scale ecological guidance. We present three examples of how the information in A Delta Renewed might be used to address different management and restoration questions. Because of the complexity of the Delta system, this guide does not address all possible questions and does not replace the need for detailed, site-specific data and expertise. Rather, it shows how the information in A Delta Renewed might provide a common foundation for restoration planning.

The User Guide was written for a broad audience, including restoration practitioners, landowners, and local, state and federal agencies. The guide provides a step-by-step path through A Delta Renewed; a user is walked through how to apply the findings of the report via a series of steps to address each of the three restoration and management questions. This process is intended to help the user access regionally-specific recommendations and strategies to plan and manage future Delta landscapes that can support desired ecological functions over the long term.


The goal of A Delta Renewed and this guide is not to recreate the Delta of the past. Rather, the objective is to understand how we can re-establish or mimic important natural processes and patterns within this altered system to support desirable ecological functions (such as healthy native fish populations, a productive food web, and support for endangered species), now and into the future.

 (28.86 MB)
 (23.99 MB)
 (13.8 MB)
Beagle, J.; Richey, A.; Hagerty, S.; Salomon, M.; Askevold, R. A.; Grossinger, R. M.; Reynolds, P.; McClain, C.; Spangler, W.; Quinn, M.; et al. 2017. Sycamore Alluvial Woodland: Habitat Mapping and Regeneration Study. SFEI Contribution No. 816.

This study investigates the relative distribution, health, and regeneration patterns of two major stands of sycamore alluvial woodland (SAW), representing managed and natural settings. Using an array of ecological and geomorphic field analyses, we discuss site characteristics favorable to SAW health and regeneration, make recommendations for restoration and management, and identify next steps. Findings from this study will contribute to the acquisition, restoration, and improved management of SAW as part of the Santa Clara Valley Habitat Plan (VHP).

 (53.95 MB) (21.31 MB)
2016
Robinson, A.; Safran, S. M.; Beagle, J.; Grenier, J. Letitia; Grossinger, R. M.; Spotswood, E.; Dusterhoff, S. D.; Richey, A. 2016. A Delta Renewed: A Guide to Science-Based Ecological Restoration in the Sacramento-San Joaquin Delta. Delta Landscapes Project. Prepared for the California Department of Fish and Wildlife and Ecosystem Restoration Program. A Report of SFEI-ASC’s Resilient Landscapes Program. SFEI Contribution No. 799. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA.

This report offers guidance for creating and maintaining landscapes in the Sacramento-San Joaquin Delta that support desired ecological functions, while retaining the overall agricultural character and water-supply service of the region. Based on extensive research into how the Delta functioned historically, how it has changed, and how it is likely to evolve, we discuss where and how to re-establish the dynamic natural processes that can sustain native Delta habitats and wildlife into the future. The approach, building on work others have piloted and championed, is to restore or emulate natural processes where possible, establish an appropriate mosaic of habitat types at the landscape scale, use multi-benefit management strategies to increase support for native species in agricultural and urban areas, and allow the Delta to adapt to future uncertainties of climate change, levee failure, and human population growth. With this approach, it will be critical to integrate ecological improvements with the human landscape: a robust agricultural economy, water infrastructure and diversions, and urbanized areas. Strategic restoration that builds on the history and ecology of the region can contribute to the strong sense of place and recreational value of the Delta.

Printed copies of the report are available for purchase.

 

 (121.28 MB) (17.67 MB)
Doehring, C.; Beagle, J.; Lowe, J.; Grossinger, R. M.; Salomon, M.; Kauhanen, P.; Nakata, S.; Askevold, R. A.; Bezalel, S. N. 2016. San Francisco Bay Shore Inventory: Mapping for Sea Level Rise Planning. SFEI Contribution No. 779. San Francisco Estuary Institute: Richmond, CA.

With rising sea levels and the increased likelihood of extreme weather events, it is important for regional agencies and local municipalities in the San Francisco Bay Area to have a clear understanding of the status, composition, condition, and elevation of our current Bay shore, including both natural features and built infrastructure.


The purpose of this Bay shore inventory is to create a comprehensive and consistent picture of today’s Bay shore features to inform regional planning. This dataset includes both structures engineered expressly for flood risk management (such as accredited levees) and features that affect flooding at the shore but are not designed or maintained for this purpose (such as berms, road embankments, and marshes). This mapping covers as much of the ‘real world’ influence on flooding and flood routing as possible, including the large number of non-accredited structures.
This information is needed to:

  1. identify areas vulnerable to flooding.
  2. identify adaptation constraints due to present Bay shore alignments; and
  3. suggest opportunities where beaches, wetlands, and floodplains can be maintained or restored and integrated into flood risk management strategies.

The primary focus of the project is therefore to inform regional planners and managers of Bay shore characteristics and vulnerabilities. The mapping presented here is neither to inform FEMA flood designation nor is it a replacement for site-specific analysis and design.


The mapping consists of two main elements:

  1. Mapping of Bay shore features (levees, berms, roads, railroads, embankments, etc.) which could affect flooding and flood routing.
  2. Attributing Bay shore features with additional information including elevations, armoring, ownership (when known), among others.

SFEI delineated and characterized the Bay shore inland to 3 meters (10ft) above mean higher high water (MHHW) to accommodate observed extreme water levels and the commonly used range of future sea level rise (SLR) scenarios. Elevated Bay shore features were mapped and classified as engineered levees, berms, embankments, transportation structures, wetlands, natural shoreline, channel openings, or water control structures. Mapped features were also attributed with elevation (vertical accuracy of <5cm reported in 30 meter (100ft) segments from LiDAR derived digital elevation models (DEMs), FEMA accreditation status, fortification (e.g., riprap, buttressing), frontage (e.g., whether a feature was fronted by a wetland or beach), ownership, and entity responsible for maintenance. Water control structures, ownership, and maintenance attributes were captured where data was available (not complete for entire dataset). The dataset was extensively reviewed and corrected by city, county, and natural resource agency staff in each county around the Bay. This report provides further description of the Bay shore inventory and methods used for developing the dataset. The result is a publicly accessible GIS spatial database.

 (20.33 MB)
2015
Beagle, J.; Salomon, M.; Grossinger, R. M.; Baumgarten, S.; Askevold, R. A. 2015. Shifting Shores: Marsh Expansion and Retreat in San Pablo Bay. SFEI Contribution No. 751.

EXECUTIVE SUMMARY
As sea level rise accelerates, our shores will be increasingly vulnerable to erosion. Particular concern centers around the potential loss of San Francisco Bay’s much-valued tidal marshes, which provide natural flood protection to our shorelines, habitat for native wildlife, and many other ecosystem services. Addressing this concern, this study is the first systematic analysis of the rates of marsh retreat and expansion over time for San Pablo Bay, located in the northern part of San Francisco Bay.

Key findings:
• Over the past two decades, more of the marshes in San Pablo Bay have expanded (35% by length) than retreated (6%).
• Some areas have been expanding for over 150 years.
• Some marsh edges that appear to be retreating are in fact expanding rapidly at rates of up to 8 m/yr.
• Marsh edge change may be a useful indicator of resilience, identifying favorable sites for marsh persistence.
• These data can provide a foundation for understanding drivers of marsh edge expansion and retreat such as wind direction, wave energy, watershed sediment supply, and mudflat shape.
• This understanding of system dynamics will help inform management decisions about marsh restoration and protection.
• This study provides a baseline and method for tracking marsh edge response to current and future conditions, particularly anticipated changes in sea level, wave energy, and sediment supply.


Recommended next steps:
• This pilot study for San Pablo Bay marshes should be extended to other marshes in San Francisco Bay.
• These initial marsh expansion and retreat findings should be further analyzed and interpreted to improve our understanding of system drivers and identify management responses.
• A program for repeated assessment should be developed to identify and track changes in shoreline position, a leading indicator of the likelihood marsh survival.

 (93.2 MB) (31.73 MB)