Export 24 results:
Filters: First Letter Of Title is R and Author is Philip Trowbridge  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
Wu, J.; Kauhanen, P.; Hunt, J. A.; Senn, D.; Hale, T.; McKee, L. J. . 2019. Optimal Selection and Placement of Green Infrastructure in Urban Watersheds for PCB Control. Journal of Sustainable Water in the Built Environment 5 (2) . SFEI Contribution No. 729.

San Francisco Bay and its watersheds are polluted by legacy polychlorinated biphenyls (PCBs), resulting in the establishment of a total maximum daily load (TDML) that requires a 90% PCB load reduction from municipal stormwater. Green infrastructure (GI) is a multibenefit solution for stormwater management, potentially addressing the TMDL objectives, but planning and implementing GI cost-effectively to achieve management goals remains a challenge and requires an integrated watershed approach. This study used the nondominated sorting genetic algorithm (NSGA-II) coupled with the Stormwater Management Model (SWMM) to find near-optimal combinations of GIs that maximize PCB load reduction and minimize total relative cost at a watershed scale. The selection and placement of three locally favored GI types (bioretention, infiltration trench, and permeable pavement) were analyzed based on their cost and effectiveness. The results show that between optimal solutions and nonoptimal solutions, the effectiveness in load reduction could vary as much as 30% and the difference in total relative cost could be well over $100 million. Sensitivity analysis of both GI costs and sizing criteria suggest that the assumptions made regarding these parameters greatly influenced the optimal solutions. 

If you register for access to the journal, then you may download the article for free through July 31, 2019.

DOI: 10.1061/JSWBAY.0000876

R
Wu, J.; McKee, L. 2019. Regional Watershed Modeling and Trends Implementation Plan. SFEI Contribution No. 943. San Francisco Estuary Institute: Richmond, CA.
 (2.25 MB)
G
Wu, J.; Kauhanen, P.; Hunt, J.; McKee, L. 2018. Green Infrastructure Planning for North Richmond Pump Station Watershed with GreenPlan-IT. SFEI Contribution No. 882. San Francisco Estuary Institute: Richmond, CA.
 (1.39 MB)
Wu, J.; Kauhanen, P.; Hunt, J.; McKee, L. 2018. Green Infrastructure Planning for the City of Oakland with GreenPlan-IT. SFEI Contribution No. 884. San Francisco Estuary Institute : Richmond, CA.
 (1.98 MB)
Wu, J.; Kauhanen, P.; Hunt, J.; McKee, L. 2018. Green Infrastructure Planning for the City of Richmond with GreenPlan-IT. SFEI Contribution No. 883. San Francisco Estuary Institute: Richmond, CA.
 (1.82 MB)
Wu, J.; Kauhanen, P.; Hunt, J.; McKee, L. 2018. Green Infrastructure Planning for the City of Sunnyvale with GreenPlan-IT. SFEI Contribution No. 881. San Francisco Estuary Institute : Richmond, CA.
 (2.21 MB)
Kauhanen, P.; Wu, J.; Hunt, J.; McKee, L. 2018. Green Plan-IT Application Report for the East Bay Corridors Initiative. SFEI Contribution No. 887. San Francisco Estuary Institute: Richmond, CA.
 (1.26 MB)
H
 (32.2 MB)
P
Gilbreath, A.; Wu, J.; Hunt, J.; McKee, L. 2018. Pollutants of Concern Reconnaissance Monitoring Water Years 2015, 2016, and 2017. SFEI Contribution No. 840. San Francisco Estuary Institute: Richmond, CA.
 (5.55 MB)
R
Wu, J.; Trowbridge, P.; Yee, D.; McKee, L.; Gilbreath, A. 2018. RMP Small Tributaries Loading Strategy: Modeling and Trends Strategy 2018. SFEI Contribution No. 886. San Francisco Estuary Institute : Richmond, CA.
 (1.3 MB)
D
Wu, J.; Kauhanen, P.; Lowe, S.; Pearce, S.; Josh Collins. 2017. Demonstration of a Watershed Approach to Wetland Restoration Planning for Load Reductions: A Pilot Demonstration Project Using GreenPlan-IT in the Santa Rosa Plain, Sonoma County, California. SFEI Contribution No. 996. San Francisco Estuary Institute: Richmond. CA.

This summary memorandum presents technical recommendations to the 401 Certification and Waste Discharge Program (401 Program) of the State Water Resources Control Board (State Board) for a coherent, scientifically sound, repeatable, watershed approach to wetland restoration site evaluation, compliance monitoring and assessment, and Tracking. The recommendations are drawn from the previous four memoranda produced for the Pilot Demonstration Project (Project) that address the following subjects: project work plan and information flow diagram; scientific literature review; landscape scenario planning (to map and prioritize restoration opportunities); and a framework for a watershed-approach to evaluate and report the capacity of a wetland restoration site to protect wetland beneficial uses.

This Project focused on a sub-watershed of the Santa Rosa Plain, in Sonoma County, California. The area was chosen for the Project for three reasons: (1) it is integral to an existing nutrient TMDL and therefore is supported relatively well with hydrological and nutrient data; (2) the historical and existing wetlands and streams of the area were mapped recently in sufficient detail to inform landscape planning; and (3) implementation of the TMDL will involve wetland restoration to reduce downstream nutrient loads, and therefore the Project may help implement the TMDL.

The primary overall purpose of this Project was to explore how numerical simulation and statistical modeling could be combined with existing wetland assessment and reporting tools to create a coherent, watershed-based approach to wetland beneficial use protection. Any relevance to the existing nutrient TMDL for the demonstration area is an intentional, but secondary benefit of this Project.

 (761.48 KB) (420.02 KB) (1.29 MB) (1.67 MB) (2.09 MB)
R
Wu, J.; Gilbreath, A.; McKee, L. J. 2017. Regional Watershed Spreadsheet Model (RWSM): Year 6 Progress Report. SFEI Contribution No. 811. San Francisco Estuary Institute: Richmond, CA.
 (1.79 MB)
G
 (5.26 MB)
Wu, J.; Kauhanen, P.; Mckee, L. 2015. GreenPlan-IT Toolkit Demonstration Report. SFEI Contribution No. 958. San Francisco Estuary Institute: Richmond, CA.

GreenPlan-IT is a planning level tool that was developed by SFEP and SFEI with support and oversight from BASMAA to provide Bay Area municipalities with the ability to evaluate multiple management alternatives using green infrastructure for addressing stormwater issues in urban watersheds. GreenPlan-IT combines sound science and engineering principles with GIS analysis and optimization techniques to support the cost-effective selection and placement of Green Infrastructure (GI) at a watershed scale.  Tool outputs can be used to develop quantitatively-derived watershed master plans to guide future GI implementation for improving water quality in the San Francisco Bay and its tributary watersheds.

This report provides an overview of the GreenPlan-IT Tool and demonstrates its utility and power through two pilot studies which is summarized in this report as a case study. The pilot studies with the City of San Mateo and the City of San Jose explored the use of GreenPlan-IT for identifying feasible and optimal GI locations for mitigation of stormwater runoff. They are provided here to give the reader an overview of the user application process from start to finish, including problem formulation, data collection, GIS analysis, establishing a baseline condition, GI representation, and the optimization process. Through the pilot study application process the general steps and recommendations for how GreenPlan-IT can be applied and interpreted are presented.

Wu, J.; Kauhanen, P.; Mckee, L. 2015. GreenPlan-IT Toolkit User Guide. SFEI Contribution No. 958. San Francisco Estuary Institute: Richmond, CA.

Structurally, the GreenPlan-IT is comprised of three components: (a) a GIS-based Site Locator Tool to identify potential GI sites; (b) a Modeling Tool that quantifies anticipated watershed-scale runoff and pollutant load reduction from GI sites; and (c) an Optimization Tool that uses a cost-benefit analysis to identify the best combinations of GI types and number of sites within a watershed for achieving flow and/or load reduction goals. The three tool components were designed as standalone modules to provide flexibility and their interaction is either through data exchange, or serving as a subroutine to another tool. This user manual addresses each of the tools separately, though they are designed to complement each other.

N
 (2.27 MB)