

Insights from Sensors

Understanding the Complex Dynamics of Dissolved Oxygen in Lower South Bay

Phil Bresnahan, Rusty Holleman, Zephyr Sylvester, Ila Shimabuku, Emily Novick, and David Senn

San Francisco Estuary Institute

OUTLINE

Why does dissolved oxygen matter?

What are the principle drivers?

How can we untangle them?

CONCLUSION

Dissolved oxygen varies in **every** dimension

CONCLUSION

Dissolved oxygen varies in **every** dimension, but how much?

And why should we care?

WHY SHOULD WE CARE?

$$CH_2O + O_2 \rightleftharpoons CO_2 + H_2O$$

$$CH_2O + O_2 \rightleftharpoons co_2 + H_2O$$
 \leftarrow Photosynthesis dominates


```
Respiration \rightarrow dominates
CH_2O + O_2 \rightleftharpoons CO_2 + H_2O
```


The SF Bay food web depends on DO

We can directly influence DO

We need to know how much is natural vs...?

The SF Bay food web depends on DO
We can directly influence DO

Constraining variability allows us to estimate rates,

slough-to-basin scale budgets, and habitat quality and the effects of nutrient loads

THE DRIVERS OF CHANGE

Interfaces:

air-water sediment-water

Production vs. Respiration:

Phytoplankton/zooplankton/nekton/detritus/bacteria

Connections:

ponds marshes bay ocean land

Dimensions Drivers of variability in DO

Interfaces: air-water sediment-water Vertical Lateral (cross-channel) Longitudinal (along channel)

Temporal

Inter-site

Production vs. Respiration:

Phytoplankton/zooplankton/nekton/detritus/bacteria

Connections:

ponds marshes bay ocean land

Dimensions Drivers of variability in DO

Interfaces:

air-water sediment-water

Vertical •

Lateral (cross-cha

Longitudinal (channel

Temporal

Inter-site

oduction vs. Respiration:

COMPLICATED ton/detritus/bacteria

Connections:

ponds marshes bay ocean land

DISENTANGLING VARIABILITY

Vertical ?

Cross-channel?

Along-channel?

Inter-site ?

Temporal ?

DISENTANGLING VARIABILITY

Vertical ?

Cross-channel?

Along-channel?

Inter-site ?

Temporal

Deep Subtidal Biweekly-Monthly sampling

High-frequency measurements – Dumbarton

Measurements in all dimensions

Transects (cross/along-slough variability)

Transects

(cross/along-slough

variability)

Along-Slough: Alviso

Vertical/Along-Slough Variability

Distance downstream (m)

2.5

Vertical/Along-Slough Variability

Vertical

Inter-site

Temporal 🗸

Cross-channel

Along-channel 💙

Temporal Vertical Variability

Temporal Vertical Variability

Putting it all together

2016-08-27 01:00:00

Next Steps

Combine with velocity data to calculate fluxes

Preliminary Conclusions

Inter-site variability is enormous

Temporal variability is strong

Vertical variability is ephemeral

Cross-slough variability is weak to non-existent

Along-slough variability is apparent but constrained

To determine LSB biogeochemical variability, we need inter-site, vertically resolved time-series

The variability we've constrained allows us to estimate rates and slough-to-basin scale budgets and 4-D habitat quality

Thanks!

USGS Sacramento:

Kurt Weidich
Darin Einhell
Maureen Downing-Kunz
Dave Schoellhamer

San José-Santa Clara Regional Wastewater Facility:

Eric Dunlavey Bryan Frueh

Jen Hunt Philip Trowbridge Integral Consulting and Leviathan Consulting:

Frank Spada Kara Scheu Craig Jones Steve LaMothe

RMP
REGIONAL MONITORING
PROGRAM FOR WATER QUALITY
IN SAN FRANCISCO BAY

sfei.org/rmp