

PCBs in San Francisco Bay and the TMDL

- Extensive historic use around the Bay
- High levels of PCBs in sport fish prompted a health advisory
- Water quality restoration plan adopted in 2010
- Fish tissue concentration target of 10 ppb
- PCBs TMDL is 10 kg/yr

PCB Sources

External Sources (34 kg/yr)

Urban stormwater (60%)

Delta inflow (33%)

Municipal wastewater (6.9%)

Industrial wastewater (0.1%)

Internal Sources (100s-1000s kg)

In-Bay reservoir of bottom sediments

PCB Reductions and Wasteload Allocations

PCBs in Sediments

- Uneven distribution around the Bay
 - North Bay is relatively clean
 - Central Bay has highest concentrations
- Associated with old industrial areas
- Important to consider
 - Environmental justice
 - Racial equity aspects
 - Sea level rise and groundwater impacts due to climate change

What's Being Done About PCB Pollution

- Municipalities are working on stormwater management to reduce PCBs in runoff
- Industry and military are cleaning up "hot-spot" sites
- Dredgers are testing Bay sediments and properly disposing of materials with high levels of PCBs
- RMP continues to sample Bay water, sediment, and fish

Implementation Approach

Science-based

- Phased and evolutionary
- Collaborative
- With consideration of climate change, environmental justice, and racial equity issues

Municipal Regional Stormwater Permit Urban Stormwater Management Phased Approach

NPDES requirements to reduce PCBs to the maximum extent practicable

1st permit = pilot scale implementation to determine effectiveness

2nd permit = focused implementation of effective and feasible controls to attain allocation(s)

3rd permit = programmatic approach to advance focused implementation to attain allocation(s)

Urban Stormwater Management Actions

1. Attend to old industrial areas to reduce loads "turn off the tap"

2. Identify PCB source properties and refer for cleanup

Urban Stormwater Management Actions

Expansion joint material on bridge containing > 4000 ppm PCBs Photo courtesy of BASMAA

3. Control materials containing PCBs

→ Roadway caulk, demolition debris, electrical equipment

10,000 kg estimate of PCBs in older buildings' caulk!

4. Pursue opportunities for green stormwater infrastructure

PCB Cleanups

- Cleanup completed in 19 upland & 8 in-Bay sites
- Cleanup ongoing in 19 upland & 6 in-Bay sites
- ~50,000 metric tons of PCBcontaminated soils has been removed from 9 sites.
 Concentration range 2-2,000 ppm

India Basin, Hunter's Point, SF

 Challenges: linking contamination to upland source properties, identifying dischargers, dealing with multiple dischargers, and high costs

Future Actions

Emeryville Crescent

San Leandro Bay

Steinberger Slough Bay-wide PCB reduction progress is slow; however, focusing on PMUs will result in significant load reductions and have a profound impact in Bay's recovery

Change in sediment concentration with changing loads in SLB

Future Actions and Plans

In the future, we may focus on certain segments of the Bay and/or margin areas with elevated PCBs

Regional Watershed Dynamic Model (WDM)

Continued collaboration

More focus on cleanups

TMDL revision may be considered in ~5 years to revise WLAs and/or schedule

7 subregions of the Bay as modeled in WDM to capture spatial variation of physical processes across the Bay

