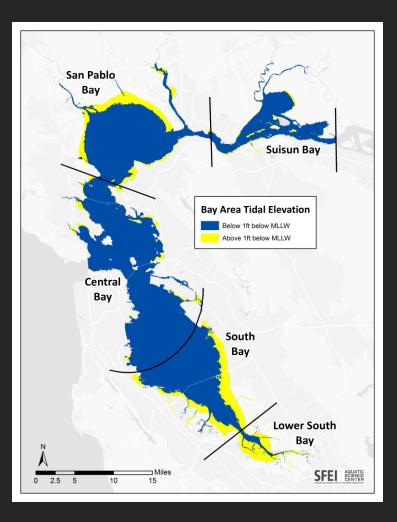


Margins Ambient Sediment Data Needs

RMP April 2014

Decisions to Make

- 1. Do we need ambient margins monitoring?
- 2. Are there benefits to ambient margins data sooner/now?
- 3. What scope of effort should we start with?


RMP S&T Questions

- 1. Are chemical concentrations in the Estuary at levels of potential concern and are associated impacts likely?
- 2. What are the concentrations and masses of contaminants in the Estuary and its segments?
- 3. What are the sources, pathways, loadings, and processes leading to contaminant-related impacts in the Estuary?
- 4. Have the concentrations, masses, and associated impacts of contaminants in the Estuary increased or decreased?
- 5. What are the projected concentrations, masses, and associated impacts of contaminants in the Estuary?

Missing Margins Area?

Segment	Bay 1ft <mllw km2</mllw 	Margins 1ft <mllw to 1ft<mhhw< th=""><th>% in Margins</th></mhhw<></mllw 	% in Margins
Suisun Bay	108	8	7%
San Pablo Bay	239	50	17%
Central Bay	402	15	4%
South Bay	180	61	25%
Lower South Bay	10	29	74%

Leading Questions

- Are margins ambient data needed?
 - Are margins important habitat?
 - Do we need condition beyond managed sites?
 - Are margins data needs higher?

Ambient vs.Targeted?

- Data availability/numbers
 - Bay S&T > Margins hotspot >> Margins ambient
 - vs. is wrong framing (e.g., why Bay S&T vs. hotspots/loads/etc.)
- Why targeted before ambient?
 - Immediate before & after control needs, no \$
 - Target=discharge, "near"-field ambient influenced
- Why ambient before targeted?
 - What if a "target" site is just average?

- General water quality management of important Bay habitat
 - Evaluating status (e.g., impairment)
 - Evaluating trends

 If margins are a habitat of concern, need ambient data for evaluation & tracking

- Managing bioaccumulative pollutants

 Biota often exposure integrators
 - Ambient data needed for exposure distribution, establishing correlation
 - Spatially integrated (3-4km radius) data correlate better (small fish PCBs) than colocated/nearest samples
- Need distributed ambient data to understand/correlate exposure

- Managing polluted sites
 - Sites > open Bay may be just "typical" for margins
 - Ambient data may reveal unaccounted sources/factors/processes
 - Comparison to unmanaged area response
- Need ambient data (even if low power initially)

- Evaluating sediment re-use
 - Is sediment worse than open Bay but better than typical margins sediment?
 - E.g., simply breaching dike may supply even lower quality sediment
 - Sediment deficit in the Bay
 - Additional opportunities for sediment re-use?
- Need ambient margins data

 Bay ambient & target margins bias data

Opportunities

- Fix exclusion of (important?) habitat
- Get unbiased evaluation of condition
- Even just a few samples start to develop power
 - Are margins much worse than Bay?
 - Can exposure explain biota patterns?
 - Are targeted sites really much different?
 - Is dredged sediment better than average?

Discussion Questions

- Are margins important part of the ecosystem?
 If yes, margins need to be monitored
- Need status beyond hotspots & sources?
 If yes, we need *ambient* margins monitoring
- Benefits to ambient margins sooner?
 - Less data than Bay ambient (more power improvement per sample added)
 - Needed context to interpret target sites anyway

Options

- What sediment information is needed?
 Chem, +tox?, +benthos?
- With what approach and time frame?
 - Options based on intensity of effort, cost, locations, & timelines of targeted efforts

Costs

- Higher sampling logistics costs per station (~20%)
- Decrease of Bay S&T power if substituted for open Bay sites
 - Reduction of Bay sites to 4 per segment = <~5% power loss (except Suisun)</p>
 - Reduction to 2 Bay sites per segment = <25% power loss (except Suisun)</p>

Suisun Power Loss

			Suisun Bay							
			Sam	Sampling Interval (years)						
						4	5			
Scenario:		2	76%	51%	37%	26%	23%			
PCBs	ar	4	93%	71%	64%	50%	43%			
Sediment	ýe	6	98%	84%	74%	63%	55%			
20 Year	Samples/year	8	99%	88%	82%	68%	62%			
3.5% Annual Dedine	ame	10	100%	92%	88%	72%	67%			
	Ö	12	99%	92%	87%	78%	71%			
Scenario:		2	51%	29%	20%	17%	16%			
Mercury	ar	4	76%	48%	35%	34%	22%			
Sediment	/ye:	6	91%	60%	46%	44%	34%			
30 Year	Samples/year	8	96%	74%	60%	55%	43%			
1% Annual Dedine	J m	10	98%	83%	67%	65%	45%			
	õ	12	98%	89%	73%	68%	54%			

Suisun Options

- Suisun low power due to high variance
 - Proximity to episodic sediment loads
 - Can we sample our way out of variability (spatially yes, temporally ?)
 - Are there management decisions contingent on Suisun power?
 - Could be excepted from change in N

Semi-hybrid option

- GRTS sites, alter schedule as needed

 Parallel targeted efforts (sites or segments)
 Nearby sites sooner (jump sequence)
 Lose short term ability to compare subsets
 GRTS designed so contiguous sequences
 - GRTS designed so contiguous sequences spatially distributed and unbiased
 - Once filled in unbiased again
 - Conflating spatial/temporal differences

Initial Effort Options

- 1st round all at once as supplement/ one time replacement of Bay S&T
 - S&T sed year or non-sed year
- 2-3 Moderate efforts
 - Cover the margins within 2-3 events
- 5 Incremental efforts
 - Eventually (5-10 yrs?) cover representatively
 - Long term stays representative
- Proportional Bay S&T swap
 - 10+ yrs to cover representatively

- 40 sites all at once (\$420k*)
 - + Quickly catch up in representativeness Some statistical power quickly
 - + No/minimal confounding of spatial and temporal variations
 - High single outlay
 - High load on S&T labs

*(tox & benthos ~\$110k of total)

• 2-3 Events (\$200k+ x 2)

+ Catch up in representativeness < 5 yrs
Intermediate annual outlay
Moderate load on S&T labs

- Some conflating spatial and temporal (e.g., wet vs dry year) variations

Reduced if all segments in each event

May get lucky with similar water years

- 5 Events (\$100k- x 5)
 - + Smaller annual outlay
 - + Smaller load on S&T labs
 - More conflating spatial and temporal (e.g., wet vs dry year) variations

Reduced if all segments in each event

- Unlikely to always have similar water years
- Slow to catch up in representativeness
 - Low power in early years

- Area proportional Bay S&T swaps
 - + No change in S&T sample #s
 - + Smaller load on S&T labs
 - Even more conflating spatial and temporal (e.g., wet vs dry year) variations
 - Super slow to achieve representativeness
 - No/low power in early years (1 site segments)
 - Decade(+?) to get spatial coverage

(Similar to 5 events option in other segments)

Preferred Option?

 Offset Bay S&T Reduction - 40 or 20 sites every 2 years - 60 sites reduced to 20 every 4 years = up to 40 margin sites every 4 years? Not 4th option (area proportional) - Especially slow if only 20 sites every 4 yrs No stats with 1 sample segments – More sites in early rounds helpful

Margins (Sed) S&T Needs

- Existing data not a suitable substitute
 - Bay & hotspots have different sources, processes
 - Extrapolations need validation and may be site specific
- Needed even with targeted margins data
 - Important complement to biomonitors
 - Ambient baseline & current state
 - Targeted data have biased means, variances
 - Biased (hotspot/source) data at best provides bounds
 - Fixed grids unbiased means, but biased variance

Biomonitoring Needs

- Ambient complement to biomonitors
 - Sediment comparatively immobile
 - Co-located data only sufficient for stationary species
 - Other factors in biotic variation
- If mobile (small fish) biomonitors

 Overlapping/nearby 3-4 km radius ranges
 mapping nearly all ambient anyway

Margins (Sed) S&T Limits

- Not pinpointing hotspots or sources
 Only shows distributions & gradients
- Generally not an endpoint in itself
 Acute & chronic tox limits usually met
 - Tissue targets for bioaccumulatives
- Initially low power (depending on ?)
 - Many samples /years for statistical power for small differences, but >0 power

Street, ors

Suggested Approach

- Spatially distributed
 - GRTS similar to Bay S&T
 - set exclusion zones to reduce overlap/repeat
 - can exclude cleanup sites
 - Spatial composites if small scale variation unimportant
 - Special study sites can be piggybacked
 - If spatial/ temporal needs match

Monitored Parameters

- Sediment components
 - Chemistry
 - Toxicity*?
 - Benthos (food web)*?
 - survey, not attempting effects causality

Margins Power, N=6+6=12

• 1 tailed t-test, margins PCB 3x higher

				-		-	
Margins (+3x)	N=4	N=6	N=8	N=10	N=12	N=14	N=16
Central Bay	77%	92%	98%	99%	100%	100%	100%
Lower South Bay	99%	100%	100%	100%	100%	100%	100%
San Pablo Bay	89%	98%	100%	100%	100%	100%	100%
South Bay	96%	100%	100%	100%	100%	100%	100%
Suisun Bay	30%	42%	53%	61%	69%	75%	80%

Margins Power, N=8+4=12

• 1 tailed t-test, margins PCB 3x higher

						-	
Margins (+3x)	N=4/2	N=6/3	N=8/4	N=10/5	N=12/6	N=14/7	N=16/8
Central Bay	57%	79%	90%	95%	98%	99%	100%
Lower South Bay	92%	99%	100%	100%	100%	100%	100%
San Pablo Bay	70%	90%	97%	99%	100%	100%	100%
South Bay	83%	97%	99%	100%	100%	100%	100%
Suisun Bay	22%	31%	39%	46%	53%	59%	64%

Margins Power, N=6+6=12

• 1 tailed t-test, margins Hg 3x higher

Margins (+3x)	N=4	N=6	N=8	N=10	N=12	N=14	N=16
Central Bay	91%	99%	100%	100%	100%	100%	100%
Lower South Bay	100%	100%	100%	100%	100%	100%	100%
San Pablo Bay	100%	100%	100%	100%	100%	100%	100%
South Bay	98%	100%	100%	100%	100%	100%	100%
Suisun Bay	64%	82%	92%	96%	98%	99%	100%

Margins Power, N=8+4=12

• 1 tailed t-test, margins Hg 3x higher

Margins (+3x)	N=4/2	N=6/3	N=8/4	N=10/5	N=12/6	N=14/7	N=16/8
Central Bay	74%	92%	98%	99%	100%	100%	100%
Lower South Bay	92%	99%	100%	100%	100%	100%	100%
San Pablo Bay	98%	100%	100%	100%	100%	100%	100%
South Bay	86%	98%	100%	100%	100%	100%	100%
Suisun Bay	45%	65%	78%	87%	92%	95%	97%

Small Power Loss (PCBs)

			San Pablo Bay							
		-	Sam	Sampling Interval (years)						
			1	2	3	4	5			
Scenario:		2	96%	75%	64%	43%	36%			
PC Bs	ar	4	100%	95%	88%	73%	61%			
Sediment	Samples/year	6	100%	97%	95%	86%	78%			
20 Year	sejo	8	100%	99%	97%	90%	84%			
3.5% Annual Dedine	me	10	100%	99%	98%	93%	89%			
	Š	12	100%	100%	99%	95%	91%			
Scenario:		2	100%	100%	95%	93%	81%			
Mercury	Ъ	4	100%	100%	99%	98%	93%			
Sediment	/ye;	6	100%	100%	99%	99%	97%			
30 Year	Samples/year	8	100%	100%	100%	99%	97%			
1% Annual Dedine	J L	10	100%	100%	100%	100%	97%			
	Š	12	100%	100%	100%	100%	98%			

Small Power Loss (Hg)

			Lower South Bay							
			Sam	pling	Interva	al (year	s)			
			1	2	3	4	5			
Scenario:		2	100%	97%	92%	78%	67%			
PCBs	ar	4	100%	100%	98%	95%	89%			
Sediment	i/ye	6	100%	100%	100%	97%	95%			
20 Year	Samples/year	8	100%	100%	100%	98%	96%			
3.5% Annual Dedine	am a	10	100%	100%	99%	99%	97%			
	õ	12	100%	100%	100%	99%	97%			
Scenario:		2	99%	87%	74%	72%	56%			
Mercury	Ъ	4	100%	94%	87%	83%	76%			
Sediment	/yeï	6	100%	96%	91%	90%	81%			
30 Year	Samples/year	8	100%	98%	92%	92%	84%			
1% Annual Dedine	Ĕ	10	100%	97%	94%	93%	85%			
	ഗ്	12	100%	98%	94%	93%	88%			