RMP Sample Archive Strategy

RMP ECWG Meeting March 26, 2010

SAN FRANCISCO ESTUARY INSTITUTE

7770 Pardee Lane, Second floor, Oakland, CA 94621 p: 510-746-7334 (SFEI), f: 510-746-7300, www.sfei.org

Purpose of the RMP Specimen Bank

A repository for sample material that can be used to document and assess the quality of the SF Estuary through retrospective chemical analyses

- 1) Time trend analyses of chemical contaminants
- 2) Investigation of emerging contaminants
- 3) Future verification of analytical results if quality assurance issues arise

Storage at -20 °C

Advantages

- Less expensive
- Less maintenance
- Suitable for inorganics
- Suitable for persistent organics for at least 10-15 years?

Disadvantages

- Preservation of persistent organics for > 15 years uncertain
- Integrity of reactive, less persistent chemicals questionable
- Moisture migration, ice crystals, tissue desiccation (dry weight analysis only)
- Tissue sample color changes, bacterial action highly suspected (NIST)
- Changes in lipid content

Storage at ≤ -80 °C

Advantages

- 'Absolute' preservation of chemical integrity in long-term (?)
- No moisture migration, tissue color change

Disadvantages

- More expensive
- More maintenance

Current Archive Location

Schaeffer's Meat and Cold Storage, Oakland

- -18 °C
- Continuously monitors temperature electronically
- Keeps temperature log records
- No backup generator, but expected to hold temp for a few days during a power failure
- 'Short-term archive'

Marine Environmental Specimen Bank

- Hollings Marine Lab, NIST,
 Charleston, SC
- Liquid N2 vapor freezers (-150 °C)
- 'Long-term archive' (> 10 yrs)

- State of the art facilities, banking protocols, SOPs
- Computerized tracking systems, security systems, continuous electronic monitoring of storage conditions
- Classified air clean rooms for cleaning storage containers, processing banked samples

NIST Collaboration

What We Get Out of It

- Secure, long-term preservation of RMP samples (includes storage container cleaning, management, inventory, maintenance, etc)
- Chemical data (potentially)

What They Get Out of It

- \$5,000-10,000/year
- RMP samples for NIST studies

\$5 000-10 000/year

Sediment Samples

Table 1. Sediment samples collected for the RMP Specimen Bank

Samples	# of containers	Sediment per container (ml)	Container	Storage Purpose	Storage Temperature	Volume needed for each composite (ml)
Historic sites	3	45-50	60 ml glass jar ^a	Time trends, CECs, QA/QC	-18 °C	
(n = 7 composites)	2	200	250 ml PE jar⁵	Time trends, CECs, QA/QC	-18 °C	100
	3	18-20	22 ml Teflon vial ^c	Long-term archive	LN2	100
	5	4	5 ml PP cryovial ^c	Long-term archive	LN2	<u>(</u>
Random sites (n = 40 composites in summer/dry	3	45-50	60 ml glass jar ^a	Time trends, CECs, QA/QC	-18 °C	75
season or 20 composites in winter/wet season)	2	20-25	250 ml PE jar⁵	Time trends, CECs, QA/QC	-18 °C	/3

PE = polyethylene; PP = polypropylene; CECs = contaminants of emerging concern; QA/QC = quality assurance/quality control; LN2 = liquid nitrogen vapor

- a = Pre-cleaned/PC class jars, Teflon-lined lid, supplied by ESS Vial (Oakland, CA)
- b = Pre-cleaned by ?, linerless lid, supplied by Fisher Scientific
- c = Pre-cleaned by NIST
 - Smaller volume aliquots (all matrices)
 - Long-term storage of historic site samples only

Bivalve Samples

Table 2. Bivalve samples collected for the RMP Specimen Bank

Samples	# of containers	Tissue mass per container (g wet wt)	Container	Storage Purpose	Storage Temperature	Mass needed for each composite (g wet wt)
All sites	3	15	60 ml glass jar ^a	Time trends, CECs, QA/QC	-18 °C	
(n = 11 composites)	2	15	30 ml PP jar⁵	Time trends, CECs, QA/QC	-18 °C	135
	3	15	22 ml Teflon vial ^c	Long-term archive	LN2	133
	5	3	5 ml PP cryovial ^c	Long-term archive	LN2	

PE = polyethylene; PP = polypropylene; CECs = contaminants of emerging concern; QA/QC = quality assurance/quality control; LN2 = liquid nitrogen vapor

- a = Pre-cleaned/PC class jars, Teflon-lined lid, supplied by ESS Vial (Oakland, CA)
- b = Pre-cleaned by ?, linerless lid, supplied by Fisher Scientific
- c = Pre-cleaned by NIST
 - Long-term storage of samples from all sites

Sport Fish Samples

Table 3. Sport fish samples collected for the RMP Specimen Bank

Samples	# of containers	Tissue mass per container (g wet wt)	Container	Storage Purpose	Storage Temperature	Mass needed for each composite (g wet wt)
Baseline for all samples except	3	15	60 ml glass jar ^a	Time trends, CECs, QA/QC	-18 °C	
white croaker, shiner	2	15	30 ml PP jar⁵	Time trends, CECs, QA/QC	-18 °C	120
surfperch, and northern anchovy	3	15	22 ml Teflon vial ^c	Long-term archive	LN2	
-	3	15	60 ml glass jar ^a	Time trends, CECs, QA/QC	-18 °C	135
White croaker	2	15	30 ml PP jar⁵	Time trends, CECs, QA/QC	-18 °C	
Willie Cloaker	3	15	22 ml Teflon vial ^c	Long-term archive	LN2	
	5	3	5 ml PP cryovial ^c	Long-term archive	LN2	
	4	15	60 ml glass jar ^a	Time trends, CECs, QA/QC	-18 °C	
Shiner surfperch	2	15	30 ml PP jar⁵	Time trends, CECs, QA/QC	-18 °C	135
	3	15	22 ml Teflon vial ^c	Long-term archive	LN2	ĺ
Northam ancharm	1	10-15	60 ml glass jar ^a	Time trends, CECs, QA/QC	-18 °C	30-45
Northern anchovy	1	10-15	30 ml PP jar⁵	Time trends, CECs, QA/QC	-18 °C	
(30-45g tissue)	1	10-15	22 ml Teflon vial ^c	Long-term archive	LN2	
Northern anchovy	1	10-15	60 ml glass jar ^a	Time trends, CECs, QA/QC	-18 °C	20-30
(20-30g tissue)	1	10-15	22 ml Teflon vial ^c	Long-term archive	LN2	20-30
Northern anchovy (10-20g tissue)	1	10-15	22 ml Teflon vial ^c	Long-term archive	LN2	10-20

- Sub-sample of all species in Teflon vial (long-term, all analytes except PFCs)
- Sub-sample for PFCs from white croaker only

Bird Egg Samples

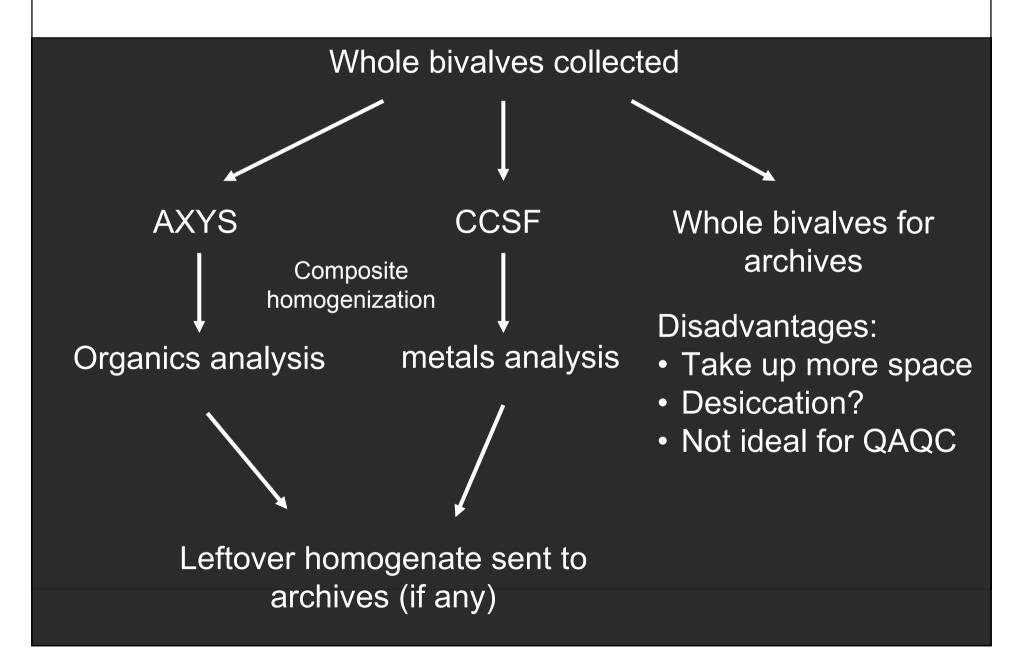
Table 4. Bird Egg samples collected for the RMP Specimen Bank

Samples	# of containers	Tissue mass per container (g wet wt)	Container	Storage Purpose	Storage Temperature	Mass needed for each composite (g wet wt)
All sites	4	15	60 ml glass jar ^a	Time trends, CECs, QA/QC	-18 °C	
(n = 9 composites)	2	15	30 ml PP jar⁵	Time trends, CECs, QA/QC	-18 °C	150
	3	15	22 ml Teflon vial ^c	Long-term archive	LN2	150
	5	3	5 ml PP cryovial ^c	Long-term archive	LN2	

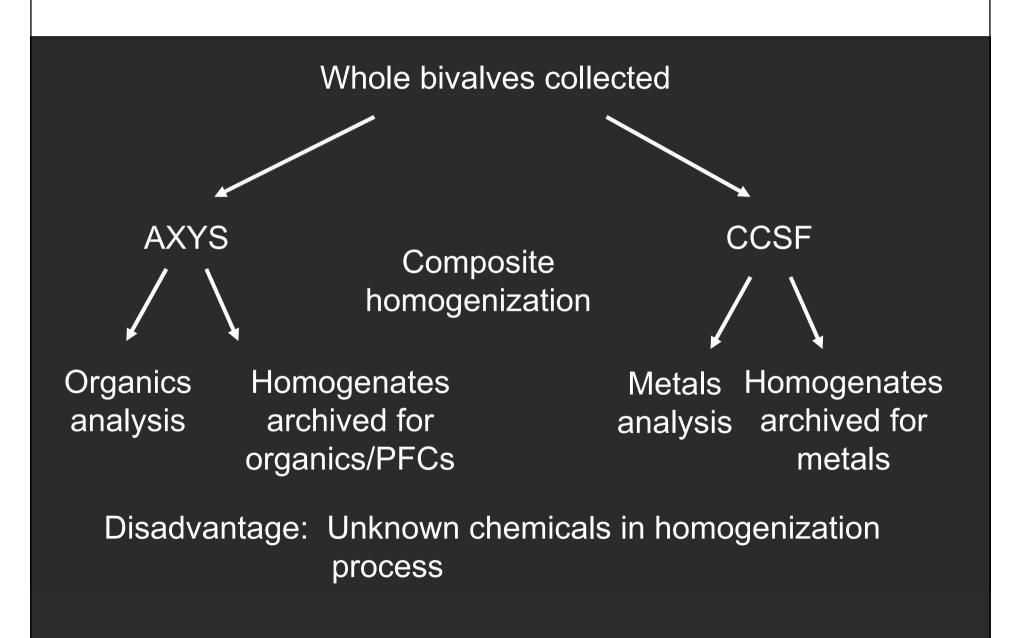
PE = polyethylene; PP = polypropylene; CECs = contaminants of emerging concern; QA/QC = quality assurance/quality control; LN2 = liquid nitrogen vapor

a = Pre-cleaned/PC class jars, Teflon-lined lid, supplied by ESS Vial (Oakland, CA)

b = Pre-cleaned by Moss Landing Marine Labs, linerless lid, supplied by Fisher Scientific


c = Pre-cleaned by NIST

Long-term storage of samples from all sites


Hold Times

Samples	Hold Time		
Short-term archive	15 years (beginning with samples added in 2010)		
Long-term archive	40 yrs; after 40 yrs keep only those collected every 5 yrs		
All Tissue	40 yrs; after 40 yrs keep sediment collected every 3rd year, tissue samples every 6th year		
Extracts	1 year		

Current Bivalve Archive Procedures

Potential Changes to Bivalve Procedures

Monitoring Chemical Degradation

NIST 1974b: fresh frozen mussel tissue (Mytilus edulis)

- 3 replicates analyzed every 4 years
- Coincides with biennial bivalve monitoring
- Same target analytes as analyzed in S&T monitoring
- Kept in storage (-20 and -150 °C) with other RMP samples

Why mussel SRM?

- Mussels frequently analyzed by RMP
- Collected from an urban estuary (Boston Harbor)
- NIST-certified PAHs, PCBs, OC pesticides
- NIST published reports: PBDEs, organotins, musks, MeHg

Monitoring Chemical Degradation

- 6 analyses of 3 SRM reps every 4 years (PAHs, PCBs, PBDEs, pest, metals, ?)
- 10g per replicate for each analysis * 3 replicate * 6 analyses = 200 g every 4 yrs

	Cost every 4 years	Total over 40 years
SRM	\$3,200 (200g SRM)	\$32,000
Analysis of 3 replicates (\$500-600/run*6 chems)	\$10,000	\$100,000
Total	\$13,200	\$132,000
x 2 freezers (-18 and -150 C)	\$26,400	\$264,000

Estimated cost per year: ~\$6,000

Long-term archive: ~\$5,000-10,000/year

Short-term archive: ~\$19,000/year

Issues to Address

- 1. Bivalve homogenization, storage of whole bivalves?
- 2. Procedure for monitoring chemical degradation
- 3. Others?