

SFB Cluster Analysis

Ananda Ranasinghe

AnandaR@sccwrp.org

SFEI Benthic Work Group June 3, 2009

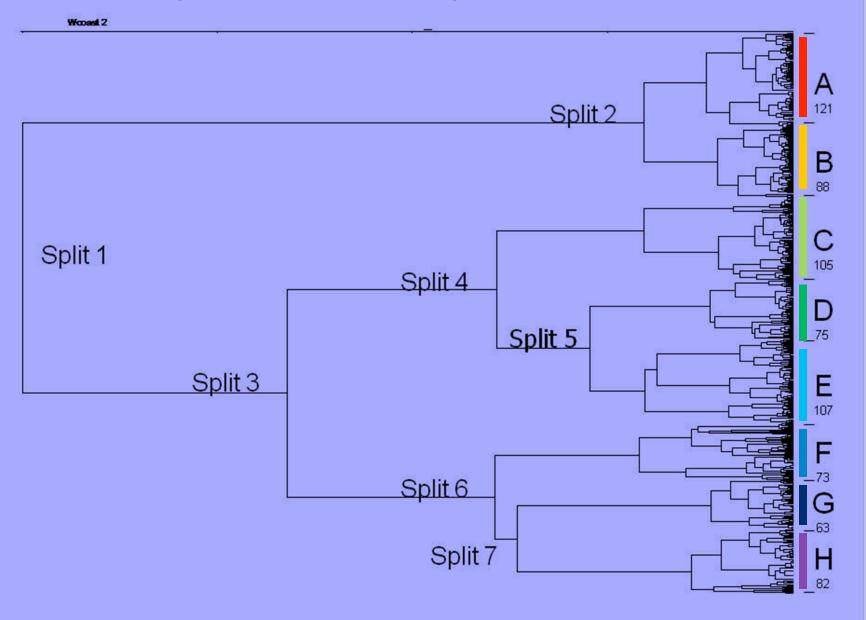
Road Map

• The main question

- What are the SFB habitat-related assemblages?
- Publish the answer in a peer-reviewed journal
- Background
 - Six California habitat-related assemblages were identified previously
- SFB analysis method details
- Question for you
 - What additional choices should we explore?

Why Identify Habitats?

- Needed for benthic index development
- Species composition and abundance vary naturally from habitat to habitat
- Therefore,
 - Biological expectations for reference conditions, and
 - Measurements of deviation from reference
 - Should vary accordingly

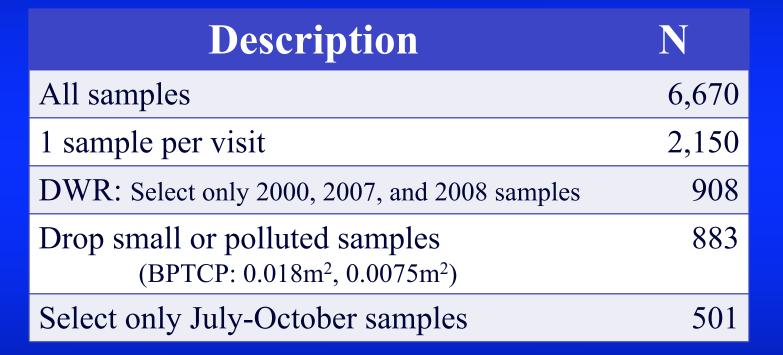


Background

- Six California habitats were identified previously
 - Analyzed west coast bay and estuary data
 - 0.1m² samples screened through 1 mm sieves
 - Most SFB samples are 0.05m² samples screened through 1 mm sieves
- Same methods for this study (so far)
 - Except for sieve size and sample area
 - Many more data available

West Coast Bay & Estuary Assemblages

Dendrogram of 714 samples using 881 species abundances



California Habitat-Related Benthic Assemblages

Habitat	Description
С	Southern California marine bays*
D	Polyhaline central San Francisco Bay*
Е	Estuaries and wetlands
F	Very coarse saline sediments
G	Mesohaline San Francisco Bay
Н	Oligohaline and limnetic waters

*: SQO benthic indices calibrated and validated

SFB Cluster Analysis Methods 1 Data Reduction

8

SFB Cluster Analysis Methods 2

Option	Choice
Sample min. abundance or no of taxa	None
Species min. occurrences	2
Abundance transformation	Square root
Abundance standardization	Column mean of values > 0
Dissimilarity Index	Bray-Curtis
Step-across adjustment	BCDI > 0.8
Sorting	Flexible β = -0.25

Today's Questions

- What are the conclusions from today's analysis?
- What additional analyses should we explore?
- Meet again?
 - Review analyses?
 - Plan writing?