Draft Report: Conceptual Model to Support PCB Management and Monitoring in the Emeryville Crescent Priority Margin Unit

J.A. Davis, D. Yee, A.N. Gilbreath, and L.J. McKee
San Francisco Estuary Institute

May 2016
Executive Summary

The 2014 update of the RMP PCB Strategy called for a multi-year effort to implement the recommendations of the PCB Synthesis Report (Davis et al. 2014) pertaining to:

1. identifying margin units that are high priorities for management and monitoring,
2. development of conceptual models and mass budgets for margin units downstream of watersheds where management actions will occur, and
3. monitoring in these units as a performance measure.

The goal of the effort is to inform the review and possible revision of the PCB TMDL and the reissuance of the Municipal Regional Permit for Stormwater (MRP), both of which are tentatively scheduled to occur in 2020. Conceptual model development for four priority margin units (PMUs) that are high priorities for management and monitoring will provide a foundation for establishing effective and efficient monitoring plans to track responses to load reductions and will also help guide planning of management actions. The Emeryville Crescent (the Crescent) is the subject of this report and the first PMU to be studied.

The goal of this report is to answer three questions related to management and monitoring of PCBs in priority margin units.

1. Can we expect a decline in any compartment of the PMU in response to projected load reductions in the PMU watershed?
2. How should tributary loads be managed to maximize PMU recovery?
3. How should the Crescent be monitored to detect the expected reduction?

This report provides a technical foundation for answering these questions to the extent possible with existing information, and identifies the information that is most urgently needed to provide answers that are sufficient to support decision-making.

A conceptual model was developed that includes four major elements:

1. loading from the watersheds;
2. initial deposition and retention;
3. processes determining the long-term fate of PCBs in sediment and water; and
4. bioaccumulation in the food web.

This conceptual model provided a basis for the following answers to the three questions posed above.

1) Can we expect a decline in any compartment of the PMU in response to projected load reductions in the PMU watershed?

A simple, one-box fate model suggests that a 15 cm mixed sediment layer would respond fairly quickly to changes in tributary inputs, with a change to a mixed layer concentration approaching a long-term steady state value (and a new mass balance of inputs and losses) in 10 years, although this rate of change to steady state is likely somewhat accelerated by the one-box assumption. These changes in the mixed layer would lead to similar changes in PCB exposure across the entire food web.
Since a significant amount of food web transfer of PCBs to species of interest occurs through benthos that are surface deposit feeders and filter feeders, some members of the food web can be expected to respond even more quickly to reductions in tributary inputs.

2) How should tributary loads be managed to maximize PMU recovery?

The Ettie Street Pump Station (ESPS) watershed accounts for an estimated 41% of the tributary export of PCBs into the Crescent. The Temescal Creek watershed also accounts for 41%, and 18% is estimated to come from the Emeryville Crescent North watershed. However, per unit area of each watershed, the Ettie Street Pump Station watershed has the highest annual load per unit area (19 g/km2) followed by Emeryville Crescent North (10 g/km2) and Temescal Creek (8.3 g/km2). Recovery of the Crescent from PCB contamination would be maximized by pursuing a load reduction strategy that encompasses all three of these watersheds. However, given the greater density of sources and source areas indicated by the yields, the most cost-effective phased strategy would be to focus earlier efforts in the Ettie Street PS watershed.

The vast majority of the tributary loads that are retained within the Crescent are likely delivered by storms with magnitudes less than the 1:1 year return interval. More of the overall flow is delivered by these smaller storms, and more of the input is likely to be retained. From the perspective of reducing impairment in the Crescent, it appears that managing and monitoring these smaller storms is more important than managing and monitoring loads from larger storms. However, given the uncertainty in the temporal distribution of the loads, further data collection is needed to verify that this conclusion is not an artifact of limited data and the assumption that rainfall distribution is a good surrogate for temporal load distribution.

3) How should we monitor to detect the expected reduction?

Preliminary field studies are needed to confirm the hypotheses put forward and information gaps identified in this conceptual model report. These include:

1. A survey of the presence, distribution, and PCB burdens of biota in the Crescent;
2. A survey of the spatial pattern of PCB concentrations in surface and subsurface sediment;
3. Data on PCB loads in stormwater from Emeryville Crescent North and Temescal Creek or data on concentrations sufficient to calibrate a model used to estimate loads.

Monitoring elements recommended for tracking declines in PCB loads and impairment of the Crescent include:
1. Annual monitoring of concentrations in prey fish. Mississippi silverside and topsmelt appear to be very well-suited as biosentinel species for tracking changes in beneficial use impacts in response to reduced tributary inputs in the Emeryville Crescent. After an initial period that characterizes interannual variation and the presence or absence of trend, a power analysis could be conducted to determine whether a reduced frequency would optimize use of monitoring resources.

2. Periodic monitoring of concentrations in shiner surfperch. Shiner surfperch are the definitive indicator of Bay impairment. This species is likely present in the Crescent and has high site fidelity, but probably has a weaker linkage to tributary inputs due to its greater use of subtidal habitat. After an initial survey, this could perhaps be done on a five-year cycle as part of RMP sport fish monitoring.

3. Tributary concentration and possibly load monitoring that is consistent with the trend monitoring strategy under development by the Sources, Pathways, and Loadings Workgroup.

4. Periodic (preferably annual) extreme near field receiving water sediment traps or surface sediment monitoring to approximately capture whole season net load concentrations.
1. Introduction

(Note: The text between the lines of asterisks below is the same text that appears in the PMU proposal. It is captured here for posterity as part of this report. If you have read the proposal you can skim this section.)

The RMP PCB Strategy Team formulated a PCB Strategy in 2009. The Team recognized that a wealth of new information had been generated since the PCBs TMDL Staff Report (SFBRWQCB 2008) was prepared. The Strategy articulated management questions to guide a long-term program of studies to support reduction of PCB impairment in the Bay. The PCB Team recommended two studies to begin addressing these questions. The first recommended study was to take advantage of an opportunity to piggyback on the final year of the three-year prey fish mercury sampling in 2010 to collect data on PCBs in prey fish also. The second study that was recommended was a synthesis and conceptual model update based on the information that had been generated since the writing of the TMDL Staff Report.

The prey fish monitoring revealed extremely high concentrations of PCBs in the food web in several areas on the Bay margins (Greenfield and Allen 2013), and highlighted a need to develop a more detailed conceptual model than the one-box model used as a basis for the TMDL. A model that would support the implementation of actions to reduce loads from small tributaries, a primary focus of the TMDL, would be of particular value. A revised conceptual model was developed that shifted focus from the open Bay to the contaminated areas on the margins where impairment is greatest, where load reductions are being pursued, and where reductions in impairment in response to load reductions would be most apparent (Davis et al. 2014).

The margins appear to be a collection of distinct local food webs that share some general similarities but are largely functionally discrete from each other. Monitoring, forecasting, and management should therefore treat these margin locations as discrete local-scale units. Local-scale actions within a margin unit, or in upstream watersheds, will likely be needed to reduce exposure within that unit. Better characterization of impairment on the margins through more thorough sampling of sediment and biota would help focus attention on the margin units where the need for action is greatest (“priority margin units” or PMUs), and will also...
Section 1: Introduction

provide an important performance measure for load reduction actions taken in local watersheds. Davis et al. (2014) recommended a focus on assessing the effectiveness of small tributary load reduction actions in priority margin units, and provided an initial foundation for these activities.

The 2014 update of the PCB Strategy called for a multi-year effort to implement the recommendations of the PCB Synthesis Report (Davis et al. 2014) pertaining to:

1. identifying margin units that are high priorities for management and monitoring,
2. development of conceptual models and mass budgets for margin units downstream of watersheds where management actions will occur, and
3. monitoring in these units as a performance measure.

A thorough and thoughtful planning effort is warranted given the large expenditures of funding and effort that will be needed to implement management actions to reduce PCB loads from urban stormwater.

The goal of RMP PCB Strategy work over the next few years is to inform the review and possible revision of the PCB TMDL and the reissuance of the Municipal Regional Permit for Stormwater (MRP), both of which are tentatively scheduled to occur in 2020. Gilbreath et al. (2015) identified four margin units that are high priorities for management and monitoring. Conceptual model development for these four priority margin units will provide a foundation for establishing an effective and efficient monitoring plan to track responses to load reductions and also help guide planning of management actions. The Emeryville Crescent is the subject of this report and the first PMU to be studied.

The goal of this report is to answer the following three questions related to management and monitoring of PCBs in priority margin units.

1. Can we expect a decline in any compartment of the PMU in response to projected load reductions in the PMU watershed?
2. How should tributary loads be managed to maximize PMU recovery?
3. How should the Emeryville Crescent PMU (the Crescent) be monitored to detect the expected reduction?

This report is intended to provide a technical foundation for answering these questions to the extent possible with existing information, and to identify the information that is most urgently needed to provide answers that are sufficient to support decision-making. The report is therefore intended for a technical audience.

The report includes four sections describing the major elements of the conceptual model for PCBs in the Crescent (Figure 1-1):

- Section 2: loading from the watersheds;
- Section 3: initial deposition and retention;
Section 4: processes determining the long-term fate of PCBs in sediment and water; and
Section 5: bioaccumulation in the food web.

The last section (Section 6) presents answers to the management questions.

References

Figure 1-1. Overall conceptual model.

1) Loading

<table>
<thead>
<tr>
<th>Marsh</th>
<th>Mudflat</th>
<th>Subtidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Water</td>
<td>Water</td>
</tr>
<tr>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
</tr>
</tbody>
</table>

2) Initial deposition

<table>
<thead>
<tr>
<th>Marsh</th>
<th>Mudflat</th>
<th>Subtidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Water</td>
<td>Water</td>
</tr>
<tr>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
</tr>
</tbody>
</table>

3) Fate processes

1. Volatilization
2. Degradation
3. Resuspension
4. Outflow
5. Burial

4) Bioaccumulation

<table>
<thead>
<tr>
<th>Marsh</th>
<th>Mudflat</th>
<th>Subtidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Water</td>
<td>Water</td>
</tr>
<tr>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
</tr>
</tbody>
</table>
SECTION 2: TRIBUTARY LOADING

a. Tributary Watersheds: General Profiles

The watershed draining to Emeryville Crescent ("the Crescent") covers an area of 37.8 km2 of mixed land use (Figures 2-1 and 2-2). Although a portion of the watershed consists of open space in the form of urban parks and some upland areas, the most dominant land use is a mix of mostly medium to high residential, commercial properties, and transportation. Although historically the area close to the Bay margin was more dominantly industrial land use, today, with the onset of redevelopment in the last several decades, the area associated with older industrial land uses is small and continuing to diminish. Drainage into the Crescent is dominated by urban runoff entering at two locations.

Figure 2-1. Main tributary watersheds to the Emeryville Crescent PMU.
The more southern point drains a total area of 8.3 km2 and is comprised of two subwatersheds – Ettie St. Pump Station (PS) watershed and Emeryville Crescent North – which come together approximately 0.6 km upstream from the Bay shoreline. Ettie St. PS subwatershed (4.6 km2) is situated between the major Oakland area highways of 580, 880, and 980, and drains the majority of the neighborhood called West Oakland. Located in close proximity to the Port of Oakland and numerous rail lines and spurs, Ettie St. PS subwatershed is a highly impervious (76%), old urban landscape with a relatively high percentage of older industrial area (10%). West Oakland embodies a rich cultural history, and although the industrial history has been in slow decline for approximately 80 years, revitalization of the neighborhood has begun taking the form of new affordable housing, transit-oriented housing and businesses, and other forms of redevelopment which are likely to continue.

The Emeryville Crescent North subwatershed (3.7 km2) is situated between Ettie St. PS and Temescal Creek watersheds and is comprised of the southern portions of Emeryville, North Oakland, and Rockridge neighborhoods. The land use profile of Emeryville Crescent North is very similar to that of Ettie St., but includes only about half the amount of industrial area and less commercial areas in exchange for more residential. The Emeryville portion of the watershed, once a more industrial area, is now dominated by commercial big box stores. North Oakland is dominantly residential but includes the major BART connector station, MacArthur BART, and Hwy 24, and is currently experiencing revitalization and gentrification. The Rockridge neighborhood is characterized by residential with some commercial area.

Temescal Creek drains 10.6 km2 below Lake Temescal and enters the Crescent from the main northern drainage point. The upper watershed of Temescal Creek consists of the Claremont Hills, and then runs through Claremont, South Berkeley, North Oakland, and a large portion of Emeryville. Claremont, South Berkeley, North Oakland, and the eastern portions of Emeryville are dominantly residential areas with some commercial, while the west Emeryville area includes the large commercial center of Bay Street, as well as a large proportion of commercial-industrial buildings including Pixar. A short section of the 80/580 freeway, along with a 4 km stretch of Hwy 24 and 2 km stretch of Hwy 13, all pass through Temescal Creek watershed below Lake Temescal.
b. Current PCB Export to the PMU

PCB loads from Ettie St. PS subwatershed have been previously estimated in two efforts including 1) an EBMUD Environmental Enhancement Project and Supplemental Environmental Project (EBMUD, 2010) and 2) the RMP WY 2011 watershed reconnaissance study (McKee et al., 2012). The EBMUD effort was focused on characterizing stormwater, dry weather, and first flush flows for investigating the potential impacts of diversion from the pump station to nearby EBMUD facilities for treatment. Sampling occurred between 2008 and 2010. EBMUD collected 10 discrete grab samples in 10 storm events, five discrete grab samples in five first flush events, and nine discrete grab samples during eight events in dry weather. PCB loads were estimated by multiplying the average dry (4.6 ng/L), wet (50.5 ng/L), and first flush (36.8 ng/L) concentrations by the estimated dry (0.52 MGD), wet (14.1 MGD), and first flush (9.5 MGD) flows and the number of days in each category (300, 60 and 5, respectively). Applying this method yielded an average annual discharge of 4.0 Mm3 and PCB load of 171 g.

The RMP WY 2011 reconnaissance effort included sampling the Ettie St. PS during one storm event and collecting 4 discrete grab samples during the course of the storm. PCB loads for Ettie St. were then estimated by using an SSC-weighted mean concentration of PCBs (60.4 ng/L) applied to the climatically adjusted average annual discharge volume (5.7 Mm3) using empirical flow data from the pump station for the period 5/2005 - 9/2008. Applying this method yielded an average annual PCB load for Ettie St. PS of 343 g.

We subsequently re-evaluated the empirical flow at Ettie St. PS and discovered that discharge had been over estimated by 3-to-4-fold. Thus, we conclude that the previous loading estimates made by EBMUD (2010) and McKee et al. (2012) were likely in error and biased high by a factor of around 4-fold. Previous estimates of pump station flows for both studies relied on the station’s SCADA system logs of pump run times in combination with the nominal capacity of each pump. This method did not include the use of a continuous stage record, which is important since the pump efficiency (or rate at which the water is pumped) decreases as the head above the pump decreases. Without this stage record, the flow was overestimated since the full pump capacity was applied to the entire time interval that the pump log indicated the pumps were on. Stage is currently not recorded at the pump station. Although SFEI is investigating ways to estimate the flow using just the pump log, at this time, we must reject the Ettie St PS empirical flow record. To more accurately estimate flows, we recommend using an instrumentation set-up as was done by the RMP during WYs 2013-2014 at the North Richmond PS (see Gilbreath et al., 2016). This set up included continuous wet well stage measurement using a pressure transducer and measurement of the pump RPMs using optical proximity sensors. These data, combined with the station pump curve provided by the pump station manager allowed for relatively accurate calculation of discharge.

In lieu of empirical flow data, Ettie St. PS flows were estimated using the Regional Watershed Spreadsheet Model (RWSM; Wu et al., 2016). The RWSM applies regionally calibrated coefficients for runoff based on a combination of land use, slope, and soil type. The RWSM estimates average annual flow

1 In the absence of flow to weight the estimates of event mean concentration (EMC) towards representative high flow conditions when the majority of load is transported, we assumed that the concentration of suspended sediment would be a reasonable surrogate for flow given the typical strong relationship between SSC and flow. Thus we used SSC as a means for weighting the concentrations to estimate the event mean concentration for use in the loads calculations.
volumes of 1.5 Mm³, equivalent to a runoff coefficient of about 0.6 (or 60% of mean annual rainfall). No flow data exist for either the Emeryville Crescent North or Temescal Creek subwatersheds, and therefore flows were estimated for these watersheds also using the RWSM.

To estimate average annual PCB loads for Ettie St. PS, flows generated from the RWSM were applied to the SSC-weighted mean concentration of the EBMUD wet weather influent samples and the RMP WY 2011 stormwater grab samples (58.8 ng/L). For Emeryville Crescent North and Temescal Creek, where no empirical PCB concentrations have been measured, loads were estimated using RWSM-estimated flows and the latest version of the RWSM PCB calibration coefficients (Wu et al., 2016). The resulting revised loads estimates (Table 2-1) include a much smaller mass for the Ettie St PS watershed (87 g/yr). The estimated range for the entire PMU is 141 – 369 g/year, and a best estimate of 214 g/year. Although for planning purposes these loads are conceptually reasonable, the main data weaknesses at this time include the:

- lack of empirical flow data for any of these watersheds
- lack of concentration data of any kind for Emeryville Crescent North and Temescal Creek
- lack of flow and concentration data collected in the manner that allow for either calibration of the model or empirical-based loads computations.

Table 2-1. Average annual load estimates for the Emeryville Margin Unit watersheds.

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Total Area (km²)</th>
<th>Total Runoff Volume (Mm³)</th>
<th>PCBs Load-Low Estimate (g)</th>
<th>PCBs Load-High Estimate (g)</th>
<th>PCBs Load-Best Estimate (g)</th>
<th>PCBs Yield-Best Estimate (μg/m²)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emeryville Crescent North</td>
<td>3.7</td>
<td>1.2</td>
<td>24</td>
<td>81</td>
<td>39</td>
<td>10.5</td>
<td>RWSM flows and RWSM estimated PCB concentrations</td>
</tr>
<tr>
<td>Ettie St Pump Station</td>
<td>4.6</td>
<td>1.5</td>
<td>61</td>
<td>113</td>
<td>87</td>
<td>18.9</td>
<td>RWSM flows and empirical PCB concentrations</td>
</tr>
<tr>
<td>Temescal Creek</td>
<td>10.6</td>
<td>3.3</td>
<td>56</td>
<td>175</td>
<td>88</td>
<td>8.3</td>
<td>RWSM flows and RWSM estimated PCB concentrations</td>
</tr>
<tr>
<td>Total for Margin Unit</td>
<td>18.9</td>
<td>6.0</td>
<td>141</td>
<td>369</td>
<td>214</td>
<td>37.7</td>
<td></td>
</tr>
</tbody>
</table>
Section 2: Loading

c. Temporal Dynamics of Loading into the PMU

To better understand how the flow of storm water, suspended sediments, and PCBs interact with or flush through the Crescent, estimates of temporal variation were needed. Estimated annual average loads were devolved into the following relevant storm styles or return intervals:

i. The load delivered during summer and winter non-storm flow

ii. The load for an “average” storm

iii. The loads for a 1:1 year return storm

iv. The load for a 1:5 year return storm

v. The load for a 1:10 year return storm

Three reference watersheds in which we have multiple years of continuous loads estimates, and which are similar in land use characteristics to the Crescent watersheds (including Z4LA, Sunnyvale East Channel and North Richmond Pump Station) were selected for analysis to estimate the proportion of load that is delivered in each of the storm styles. Because all three reference watersheds have some characteristics similar to the Crescent watersheds, the results of all three reference watersheds are reported here and we used these results to form an estimated range for the PMU watersheds.

Using NOAA Atlas 14 (http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html), precipitation magnitude, duration, and frequency estimates were identified for each of the three reference watersheds. Storm events during the continuous records for each watershed were isolated and then characterized for return interval (RI) using the NOAA Atlas 14 magnitude-duration-frequency tables. Total PCB loads for each of the isolated storm events were summed and the relationship between PCB load (as a percentage of the total annual climatically adjusted load) and RI was graphed (Figure 2-3). These linear regression relationships were applied to the RIs of interest (or storm styles listed above) to estimate the percentage of the average annual load that was transported for each storm recurrence. An “average” storm load was also identified for each of the three watersheds. This was estimated by graphing the load transported in each of the isolated storm events and selecting a moderate sized transport event to represent the “average” (Figure 2-4). The low and high percentage estimates for the three stations were used to produce the low and high range of load transport for each storm recurrence in the Crescent watersheds (Tables 2-2, 2-3 and 2-4).

2 Sunnyvale East Channel is most similar to Temescal Creek and Emeryville Crescent North watersheds in terms of the proportions of various land uses within the watershed, though Z4LA is more similar to Emeryville Crescent North in terms of size. North Richmond PS is most similar to Ettie St PS watershed in terms of land use, though Sunnyvale East Channel may better represent PCB transport in Ettie St PS watershed in that it appears to have a PCB source signature that is always evident in moderately high concentrations and episodically transported in much greater concentrations, like we expect in Ettie St.
Figure 2-3. PCB loads (as a percentage of the total annual climatically adjusted load) transported in individual storm events as a function of storm return interval.
Figure 2-4. PCB loads transported in individual storm events, sorted greatest to least. The “average” PCB load transport event was visually selected for each watershed from these graphs.
Table 2-2. PCB loads transported annually and for select return interval storms (load as a percentage of the average annual load) in reference watersheds.

<table>
<thead>
<tr>
<th>Area (km²)</th>
<th>Long Term (40 year) Avg Annual Load (g)</th>
<th>Long Term (40 year) Avg Annual Yield (g/km²)</th>
<th>Summer and winter non-storm flow PCB load</th>
<th>% of load in avg storm</th>
<th>% of load in 1:1 yr storm</th>
<th>% of load in 1:5 yr storm</th>
<th>% of load in 1:10 yr storm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunnyvale East Ch</td>
<td>15.19</td>
<td>134</td>
<td>9.4</td>
<td>NA</td>
<td>0.4%</td>
<td>4.7%</td>
<td>9.5%</td>
</tr>
<tr>
<td>Z4LA</td>
<td>4.17</td>
<td>14.6</td>
<td>3.5</td>
<td>5%</td>
<td>1.8%</td>
<td>5.2%</td>
<td>10.1%</td>
</tr>
<tr>
<td>N Richmond PS</td>
<td>1.96</td>
<td>11.4</td>
<td>5.8</td>
<td>7%</td>
<td>1.7%</td>
<td>4.6%</td>
<td>9.6%</td>
</tr>
</tbody>
</table>

Table 2-3. Range for three reference watersheds of the percentage load (proportional to the average annual PCB load) transported for selected storm recurrence intervals.

<table>
<thead>
<tr>
<th>Storm Recurrence Interval</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of load in avg storm</td>
<td>0.4%</td>
<td>1.8%</td>
</tr>
<tr>
<td>% of load in 1:1 yr storm</td>
<td>4.6%</td>
<td>5.2%</td>
</tr>
<tr>
<td>% of load in 1:5 yr storm</td>
<td>9.5%</td>
<td>10.1%</td>
</tr>
<tr>
<td>% of load in 1:10 yr storm</td>
<td>11.6%</td>
<td>12.2%</td>
</tr>
</tbody>
</table>

Table 2-4. PCB load estimates for the Crescent watersheds.

<table>
<thead>
<tr>
<th>Region</th>
<th>Long Term (40 year) Avg Annual Load (g)</th>
<th>Long Term (40 year) Avg Annual Yield (g/km²)</th>
<th>Summer and winter non-storm flow PCB load (g)</th>
<th>Avg storm load estimate (g)</th>
<th>Load in 1:1 yr storm (g)</th>
<th>Load in 1:5 yr storm (g)</th>
<th>Load in 1:10 yr storm (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ettie St. PS</td>
<td>87</td>
<td>18.9</td>
<td>5.2</td>
<td>0.3</td>
<td>1.6</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Temescal Creek</td>
<td>88</td>
<td>8.3</td>
<td>5.3</td>
<td>0.4</td>
<td>1.6</td>
<td>4.0</td>
<td>4.6</td>
</tr>
<tr>
<td>Emeryville Crescent North</td>
<td>39</td>
<td>10.5</td>
<td>2.3</td>
<td>0.2</td>
<td>0.7</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>Total for Margin Unit</td>
<td>214</td>
<td>37.8</td>
<td>12.8</td>
<td>0.9</td>
<td>3.9</td>
<td>9.8</td>
<td>11.1</td>
</tr>
</tbody>
</table>
To support mass budget calculations for the Crescent that include conservation of total load mass over a year or multiple years, we estimated a long-term, continuous dataset of daily PCB loads for the Crescent. Two continuous datasets were explored to form the foundation of these daily loads estimates: USGS San Lorenzo at San Lorenzo daily flows (WYs 1987-2015) and Western Regional Climate Center Oakland Museum gauge daily rainfall (WYs 1971-2010) (Figures 2-5 and 2-6). Because there were no suitable data in the Crescent watersheds, we used data collected in Zone 4 Line A (Gilbreath and McKee, 2015) to estimate the distribution of concentration and load variability around the mean and then applied that to the mean loads estimated above for the Crescent watersheds. To do this a three-step process was applied.

1) The daily rainfall for the respective gauge was plotted against daily PCB loads in Zone 4 Line A (Z4LA) for WYs 2007-2010. Zone 4 Line A is a small urban watershed in Hayward which was monitored extensively in WYs 2007-2010, and has an associated continuous PCB loading record (Gilbreath and McKee, 2015).

2) The resulting regression equation was applied to the entire rainfall record to estimate PCB loads for Z4LA for the entire record duration.

3) The percentage that each daily load represented relative to the total load was calculated and then applied to the estimated annual PCB loads for the PMU, resulting in an estimated daily PCB load.

USGS San Lorenzo daily flows as a potential continuous dataset was considered instead of rainfall as a surrogate in this method, however, when plotted with daily PCB loads at Z4LA, we found that the Z4LA daily PCB load transport and San Lorenzo flow characteristics exhibit a bi-modal relationship. This is probably due to the artificial daily time-step (many storms occur overnight and so would be represented on two days, e.g. Figure 2-7) and because San Lorenzo Creek flows over a longer duration than Z4LA. The relationship between Z4LA daily PCB load and Oakland Museum daily rainfall was much stronger (Figure 2-8), and therefore was used in combination with the 40-year record from Oakland Museum between (WYs 1971-2010) to estimate a 40-year record of daily PCB loads in the Emeryville PMU (see Figure 2-9 for exceedance frequency of this dataset, and Table 2-5 for summary of dataset). Although these estimates are conceptually reasonable, without measured data during a number of years in all three watersheds or enough data during a number of storms in a few years in each watershed to reliably calibrate a dynamic simulation model, these estimates are of low certainty.
Figure 2-5. Long-term time series of a) rainfall at Oakland Museum and b) flow at USGS San Lorenzo at San Lorenzo.
Figure 2-6. Three year time series of a) rainfall at Oakland Museum and b) flow at USGS San Lorenzo at San Lorenzo.
Figure 2-7. Discharge during a WY 2007 storm series at USGS Gauge San Lorenzo at San Lorenzo and Zone 4 Line A, showing how storm-driven discharges at Z4LA are flashy whereas discharge at San Lorenzo is more likely to occur over more than a single day, leading to a poor correlation between San Lorenzo daily discharge and Z4LA daily PCB load.

Figure 2-8. Daily PCB loads at Zone 4 Line A during the study period in that watershed (WYs 2007-2010, with some gaps) plotted against daily rainfall at WRCC Oakland Museum rain gauge. The relationship between Z4LA daily PCB load and Oakland Museum daily rainfall was selected as the basis for estimating long term daily loads exported from the Crescent watersheds.
Figure 2-9. Exceedance frequency of estimated daily Crescent PCB loads over a 40-year time period (WY 1971–2010).

Table 2-5. Summary of load exceedances in the Ettie St. PS and combined Crescent watersheds.

<table>
<thead>
<tr>
<th></th>
<th>Ettie St. PS watershed only</th>
<th>Emeryville Crescent PMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg Annual Load (g)</td>
<td>87</td>
<td>214</td>
</tr>
<tr>
<td>Mean Daily Load (g)</td>
<td>0.24</td>
<td>0.59</td>
</tr>
<tr>
<td>Load (g) Exceeded 1 % of time</td>
<td>4.1</td>
<td>10.1</td>
</tr>
<tr>
<td>Load (g) Exceeded 2 % of time</td>
<td>3.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Load (g) Exceeded 5% of time</td>
<td>1.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Load (g) Exceeded 10 % of time</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Load (g) Exceeded 20 % of time</td>
<td>0.017</td>
<td>0.043</td>
</tr>
</tbody>
</table>

A comparison was made between the loads estimate methods (the “recurrence interval method” generated by finding the percentage of load transported during specific storm types at reference watersheds, and the “continuous loads method” generated by using a long-term, continuous rainfall record) to ensure that the results generally corroborate one another. By selecting days from the 40-year continuous rainfall record at Oakland Museum which met the 24-hour recurrence interval values for the 1:1 year event, the 1:5 year event, and 1:10 year event, the daily loads estimated for those dates were compared to the load estimates for those storm types generated using the recurrence interval method (Table 2-6). The two methods produce similar results; although the recurrence interval method results suggest overall less load transport during these select larger storm types than does the continuous loads
method. A better estimate of return frequency of loads or the distribution of loads over time relative to climatic variation can only be obtained with empirical observations of PCB concentrations in the watershed during winter storms over a number of years or enough observations to calibrate a dynamic simulation model such as SWMM.

Although storm events larger than the 1:1 year event can transport a significant portion of the PCB load for any given year, events of that size occur infrequently. By identifying representative 1:1, 1:5 and 1:10 year events in the long-term continuous loads dataset, it’s possible to estimate the percentage of long term PCB load delivered to the Crescent during the dry season and more frequent smaller storm events versus less frequent but larger events. Based on the continuous loads method, it is estimated that 92% of the long-term PCB load to the Crescent is transported during the dry season and storm events smaller than the 1:1 storm.

Table 2-6. Summary comparison of the two methods for estimating loads in the Crescent watersheds.

<table>
<thead>
<tr>
<th>Method</th>
<th>% of average annual load transported</th>
<th>% of average load transported during storms smaller than the select event</th>
<th>% of long-term load transported during storms smaller than the select event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1 year event</td>
<td>4-5 %</td>
<td>8%</td>
<td>92%</td>
</tr>
<tr>
<td>1:5 year event</td>
<td>9-10 %</td>
<td>14%</td>
<td>97%</td>
</tr>
<tr>
<td>1:10 year event</td>
<td>11-12 %</td>
<td>16%</td>
<td>98%</td>
</tr>
</tbody>
</table>

d. **Partitioning of PCB Exports from the Watersheds**

Little is known regionally about the proportion of PCBs on varying grain size fractions. To our knowledge, the only estimates of PCB partitioning in the region were made by Yee and McKee (2010), who carried out a settling experiment to estimate the portion of PCB loads that were in different size fractions. There have also been data collected more recently by BASMAA through the CW4CB project that may also be helpful if made available. The outcome of this simple apportionment exercise is to make some first order estimates for PCBs in each of three size fractions: <0.25 µm, 25-75 µm, and >75 µm.

The limited data available (Table 2-7, data from Yee and McKee, 2010) suggest that the percentage of PCB mass in different grain size fractions can vary widely, especially for the smallest fraction (<25 µm). We recommend using the minimum and maximum of the results available as an estimate of the range of PCB mass in different grain sizes, and the average as the best estimate.
Table 2-7. The fraction of PCB mass in different grain size fractions. Study: Yee and McKee, 2010.

<table>
<thead>
<tr>
<th>Sample/site</th>
<th>PCB (ng/L)</th>
<th>%<25um incl. dissolved</th>
<th>%25-75 um</th>
<th>%>75 um</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z4-201</td>
<td>17</td>
<td>73</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Z4-203</td>
<td>30</td>
<td>49</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>Z4-204</td>
<td>23</td>
<td>46</td>
<td>21</td>
<td>33</td>
</tr>
<tr>
<td>Z4-205</td>
<td>29</td>
<td>38</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>RS-1003</td>
<td>38</td>
<td>28</td>
<td>26</td>
<td>46</td>
</tr>
<tr>
<td>RS-1004</td>
<td>17</td>
<td>51</td>
<td>16</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>17 - 38</th>
<th>28 - 73%</th>
<th>13 - 31%</th>
<th>14 - 46%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>26</td>
<td>48%</td>
<td>22%</td>
<td>31%</td>
</tr>
</tbody>
</table>

PCBs in the Dissolved Fraction

In the absence of any data for the PMU watersheds or other Bay Area small, urban tributaries, the dissolved proportion of PCBs was evaluated using two approaches. The first approach involved a literature review of dissolved PCBs in other surface runoff studies and provides general context for the likely range of dissolved PCBs under different flow conditions, while the second approach involved manipulation of PCB and SSC data from Bay Area tributaries and resulted in estimates of dissolved phase PCBs for the PMU watersheds.

Literature Review

PCBs have a high affinity for sorption to suspended sediment and organic matter in stormwater runoff. In tributaries and storm drains of watersheds contaminated by PCBs, mobilization of PCB residues by erosion and leaching of particulate material is often the dominant transport mechanism (Steuer et al., 1999; Foster et al., 2000a, 2000b; Verbrugge et al., 1995; Marti and Armstrong, 1990; Quemerais et al., 1994). In contrast to the expected preferential sorption of PCBs to particulate phases, several studies have measured higher proportions in the dissolved fraction in water samples with low suspended particulate concentrations (Chevreuil et al., 1990; Marti and Armstrong, 1990), low organic carbon content (Jiang et al., 2000), and/or in samples with PCB homolog patterns similar to Aroclor 1242/1248 (Marti and Armstrong, 1990).

Lower suspended particulate concentrations tend to persist during periods of dry weather, so dry weather conditions would favor greater proportional transport of dissolved phase PCBs. It is therefore unsurprising that when data from studies are stratified between dry and wet weather conditions, the data points representing dry weather sample collection have higher overall proportions of dissolved PCBs (Figure 2-10, 52-93% versus 10-52% for wet weather sampling).
Samples collected from the water column and bed sediment of contaminated tributaries and storm drains of Bay Area watersheds typically have PCB congener patterns indicative of high-molecular weight Aroclors 1254 and 1260 (KLI 2001, Johnson et al., 2000, Leatherbarrow et al., 2002), and therefore are expected to be primarily associated with suspended particulate material transported during storm events. Ettie St. samples collected from the water column in WY 2011 (McKee et al., 2012) were also dominated by indicators for Aroclors 1254 and 1260, however the Ettie St. samples were comprised of greater proportions of the Aroclor 1242 and 1248 congeners than most other watersheds in the study, suggesting that a larger portion of the total PCBs may be in the operationally defined dissolved phase than is otherwise typical for the Bay Area.

Figure 2-10. Summary graph of literature review case examples. Studies include: Steuer et al., 1999; Foster et al., 2000a, 2000b; Verbrugge et al., 1995; Marti and Armstrong, 1990; Quemerais et al., 1994; Howell et al., 2011; Hwang and Foster, 2008; Tlili et al., 2012; Ko and Baker, 2004; Gomez-Gutierrez et al., 2006; Bressy et al., 2012; RMP samples.

Bay Area PCB Data to Estimate Dissolved Phase

The second approach used to estimate dissolved phase PCBs in the Crescent watersheds involved graphing the available regional data (for each watershed in which we had sufficient data, referred to hereafter as the “RMP wet weather watersheds”) on total concentrations of PCBs in stormwater against the simultaneously collected suspended sediment concentrations. Only sample pairs of PCBs and SSC were used in which the collection was done when flow and SSC were low. The intercept of the linear regression equations that results was used to estimate the average dissolved phase concentration for each watershed. This estimated average dissolved phase concentration was then compared to the flow-weighted mean concentration of PCBs for the watershed and the proportion, or percentage, dissolved was calculated (Table 2-8).
These estimates of dissolved-phase PCBs were plotted against the % imperviousness and the % old industrial area in the each of the RMP wet weather watersheds (Figures 4-11 and 4-12). We anticipated the percentage in dissolved phase to be greater for more impervious watersheds due to lower SSC concentrations in these watersheds. We also anticipated that the dissolved proportion could be greater in watersheds with more old industrial area, where there is greater possibility of colloidal and liquid sources of PCBs. Using the relationships between PCBs and % imperviousness and % old industrial, dissolved phase PCBs in the Emeryville PMU watersheds were then estimated (highlighted in light gray at the bottom of the table). Based on this approach, estimates for the percentage of PCBs in the dissolved phase ranged between 13-18% for all three subwatersheds.

Table 2-8. Estimates of dissolved phase PCBs for well-sampled watersheds (in white). The three Crescent watersheds were then estimated (in gray at the bottom) based on the dissolved phase and imperviousness or old industrial relationships in the well-sampled watersheds.

<table>
<thead>
<tr>
<th>Watershed</th>
<th>PCB FWMC (ng/L)</th>
<th>Intercept</th>
<th>% Dissolved</th>
<th>% Impervious</th>
<th>% Old Industrial</th>
<th>Estimated % Dissolved based on:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z4LA</td>
<td>14.7</td>
<td>1.4</td>
<td>10</td>
<td>68%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>Marsh Ck</td>
<td>1.97</td>
<td>0.177</td>
<td>9</td>
<td>10%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>N. Richmond PS</td>
<td>8.27</td>
<td>1.92</td>
<td>23</td>
<td>62%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Sunnyvale East Ch</td>
<td>55.7</td>
<td>4.5</td>
<td>8</td>
<td>59%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Pulgas Ck PS - South</td>
<td>137</td>
<td>30.6</td>
<td>22</td>
<td>87%</td>
<td>46%</td>
<td></td>
</tr>
<tr>
<td>Ettie St PS</td>
<td>58.6</td>
<td>12.5</td>
<td>21</td>
<td>76%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Emeryville Crescent North</td>
<td></td>
<td></td>
<td></td>
<td>71%</td>
<td>9%</td>
<td>17% 15%</td>
</tr>
<tr>
<td>Ettie St PS</td>
<td></td>
<td></td>
<td></td>
<td>76%</td>
<td>10%</td>
<td>18% 15%</td>
</tr>
<tr>
<td>Temescal Ck</td>
<td></td>
<td></td>
<td></td>
<td>42%</td>
<td>7%</td>
<td>13% 14%</td>
</tr>
</tbody>
</table>
Figure 2-11. Estimated percentage of dissolved phase PCBs as a function of the percentage of old industrial area in well-sampled watersheds.

\[y = 23.97x + 12.60 \]
\[R^2 = 0.29 \]

Figure 2-12. Estimated percentage of dissolved phase PCBs as a function of the percentage of imperviousness in well-sampled watersheds.

\[y = 16.31x + 5.74 \]
\[R^2 = 0.35 \]

Method Comparison

The dissolved phase proportion estimates for the RMP wet weather watersheds as well as the Crescent watersheds were added to the graph shown previously for comparison purposes (Figure 2-13). Based on this comparison, the Emeryville Crescent dissolved phased PCB estimates are reasonable for wet weather flows. The proportion of dissolved phase PCBs during non-storm flow is likely to be much greater based on data from the literature (52-93%) and we recommend applying the median value from the literature, or 81%.
Loadings Summary

Numerous improvements could be made to the loadings estimates for the Emeryville PMU and its subwatersheds (to be discussed later), but at this time, Table 2-9 summarizes our best estimates of the PCB loads transported to the PMU during different types of flow conditions, and the partitioning character of those loads. At this time, we estimate 214 g on average are transported to the PMU from the combined 18.9 sq km of area from the three primary watersheds. It is estimated that storm flows overwhelmingly deliver that load (94%), dominantly in the particulate phase (85% versus 15% dissolved). Although the 10-year storm event can transport approximately 11-16% equivalent of the average annual load, it is estimated that approximately 92% of the long-term load is transported during the dry season and storm events smaller than the 1:1 year return frequency. Non-storm related flows likely account for only about 6% of the total load and these flows are likely dominated by PCBs in the dissolved phase.
Table 2-9. Summary table with key load and partitioning estimates during different types of flows.

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Total Area (km²)</th>
<th>Total Runoff Volume (Mm³)</th>
<th>Total Annual Load - Best Estimate</th>
<th>During storms</th>
<th>During non-storm periods</th>
<th>Dry Season and storms smaller than the 1:1 year event</th>
<th>1:10 year event</th>
<th>Dissolved phase during storms<sup>5</sup></th>
<th>Assoc. with particles <25 μm during storms<sup>6</sup></th>
<th>Assoc. with particles 25-75 μm during storms<sup>7</sup></th>
<th>Assoc. with particles >75 μm during storms<sup>8</sup></th>
<th>Dissolved phase during non-storm periods<sup>9</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emeryville Crescent North</td>
<td>3.7</td>
<td>1.2</td>
<td>39</td>
<td>37</td>
<td>2.3</td>
<td>36</td>
<td>5</td>
<td>6</td>
<td>17</td>
<td>8</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Ettie St PS</td>
<td>4.6</td>
<td>1.5</td>
<td>87</td>
<td>82</td>
<td>5.2</td>
<td>80</td>
<td>12</td>
<td>13</td>
<td>39</td>
<td>18</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Temescal Ck</td>
<td>10.6</td>
<td>3.3</td>
<td>88</td>
<td>83</td>
<td>5.3</td>
<td>81</td>
<td>12</td>
<td>11</td>
<td>39</td>
<td>18</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Total for Margin Unit</td>
<td>18.9</td>
<td>6.0</td>
<td>214</td>
<td>201<sup>a</sup></td>
<td>13<sup>a</sup></td>
<td>197<sup>a</sup></td>
<td>30<sup>a</sup></td>
<td>30<sup>a</sup></td>
<td>95<sup>c</sup></td>
<td>44<sup>c</sup></td>
<td>62<sup>c</sup></td>
<td>10<sup>d</sup></td>
</tr>
</tbody>
</table>

^a Percentage relative to the average annual load
^b The percentage dissolved is watershed specific based on Table 2-8
^c Percentage relative to the total storm-related annual load
^d Percentage relative to the non-storm-related annual load
e. **Projected Changes in Export to the PMU**

The Municipal Regional Stormwater NPDES Permit includes provisions (C.11 and C.12) that require implementation of control measures to reduce PCBs in stormwater runoff. In January 2014, the Bay Area Stormwater Management Agencies Association (BASMAA) released a report detailing the pilot projects implemented or planned and findings to date (Geosyntec and EOA, 2014). These projects were pilot level only but intended to inform potential future management actions. Measures discussed in the report (the Integrated Management Report [IMR]) included some that were aimed to have more region-wide impact, and some that were focused in five pilot watershed areas, including Ettie St. PS watershed.

Region-wide focused measures included training industrial inspectors to identify PCBs during inspections, and the development of planning tools, training, and BMP guidance to reduce off-site transport of PCBs in caulking materials during demolition and renovation of buildings. At the time of writing, industrial inspectors had been trained but there were no cases of PCBs identified in an industrial inspection, so there were no data to support an estimated load reduction in the Bay Area, let alone the Emeryville Crescent PMU, due to this control measure. Ensuring the effective reduction in off-site transport of PCBs in caulking materials could be fruitful in both the near and long-term in the Ettie St. PS watershed where significant revitalization is likely to occur over the next several decades. The IMR reported – based on the work of Klosterhaus et al. (2014) - that the average building contains 4.7 kg of PCBs, and baseline control measures are expected to capture 94% of that mass. Still, the 6% mass of PCBs released from an average building, then, is 282 g, or more than the average annual load to the entire Crescent. Key uncertainties exist in the IMR analysis, but the control of PCBs in caulking material presents one of the greatest opportunities to reduce PCB load to the Crescent.

The IMR discusses five specific measures focused in the Ettie St. PS watershed. First, several steps were completed to identify likely source properties. Potential sources in the Ettie St. Watershed were evaluated, sediment samples were collected nearby, and where high PCB concentrations are found, these sites will be referred to the regulatory agencies for cleanup and abatement. The referral process was being developed at the time of writing and no sources had yet been referred. At this time, it is not possible to estimate the load reduction due to this control measure.

Another measure identified but not implemented at the time of the report is to clean out all the wet wells in the Ettie St. PS watershed annually, when deemed necessary. Prior to the IMR, two of the four wet wells were cleaned out annually, when necessary. During 7 years of cleanouts, it was estimated that 2.5 – 69 g of PCBs were removed per cleanout (depending on the amount of accumulated sediment in the wet wells). It is unclear at this time how much additional mass will be removed by cleaning out all four wet wells, but if the two additional wet wells trap sediment at the same rate as the two wells that were previously cleaned, it is feasible that twice the mass of PCBs would be removed annually (5 – 138 g/year). The results of the pilot study will be released for review in late 2016 and made final by May 2017.

Diversion of Ettie St. PS effluent is under consideration. Low flows may be diverted to the nearby EBMUD wastewater treatment plant; however, the plant does not have the capacity to accept Ettie St. PS effluent during storms because of infiltration during storm events into its aging infrastructure. Pretreatment storage facilities could be constructed on nearby vacant land (e.g. under the MacArthur
Fwy), and then pumped to EBMUD during non-peak flow times. At this time, no specific estimates of potential load reduction are available.

Specific measures being implemented and studied during this pilot phase include a bioretention unit along a street in the Ettie St. PS subwatershed, and media filters placed at the pump station. The bioretention project is located near Peralta St between 24th and 30th streets and includes six Filterra tree well treatment units. The units have been completed and are estimated to capture 0.124 g of PCBs annually. Design plans for the media filters at Ettie St. PS have been completed but not yet constructed. It will consist of two filters, each with a capacity of approximately 30 gpm. The estimated load reduction resulting from the media filters is 0.188 g of PCBs annually. Although these measures amount to only small reductions in total PCB mass, they are only meant as pilot studies to help guide further discussion of their implementation on much larger scales. The results of these pilot studies will be released for review in late 2016 and made final by May 2017.

In addition to the IMR pilot project studies, a planning tool to help aid in the identification of the best locations for green infrastructure placement is currently in development. GreenPlan-IT (SFEI) is a geospatial modeling tool to help municipalities evaluate management alternatives for green infrastructure. San Mateo and San Jose have already used the toolkit successfully. The City of Oakland is currently working with SFEI to model flow and PCB transport through the Ettie St. PS watershed and to apply the GreenPlan-IT toolkit to guide future implementation of green infrastructure specifically to reduce PCB export to the Bay. That effort will help to refine estimates of load reduction possibilities in the subwatershed based on green infrastructure implementation, and is expected to be completed in late 2016.

In summary, near-term reduction in PCB loads are due to pilot-level management actions and therefore small (0.3 g annually due to the pump station media filters and bioretention tree well filters) or not yet estimated due to various data/information gaps or implementation hurdles (trained industrial inspectors to identify PCBs, control measures to reduce off-site transport of PCBs in caulking materials, identification of source properties requiring abatement, cleaning of all the pump station wet wells annually, and diversion of effluent from the pump station). Estimates of longer-term reduction in PCB loads due to green infrastructure scenarios are currently in development (GreenPlan-IT, SFEI) and/or will be better quantified as the current pilot projects are implemented, studied, and in turn, help to guide the long-term PCB management strategy.

In light of management actions currently in an early phase of a longer-term effort, this analysis considers a range of possible reduction levels in the PMU mass budget. The levels considered include a 25%, 50% and 75% reduction in PCB loads to the PMU.

f. Monitoring Recommendations

Over the past 17 years, the Sources Pathways and Loadings Workgroup has developed and implemented a number of field-intensive monitoring protocols designed to characterize concentrations, particle ratios, and watershed loadings during storms. In addition, most recently, the workgroup has been developing and testing a series of remote sampling techniques that, if successful, may reduce the field effort required for each individual sample, potentially allowing for a greater number of samples with
a fixed budget or reduced overall budget. Each of these monitoring protocols is tailored to suit specific questions and needs (Table 2-10). Presently, these same monitoring designs are being explored for the ability to use them for measuring trends in response to management efforts.

Preliminary Data Gathering

The main near-term data weaknesses associated with the loading estimates are the lack of any kind of monitoring data during storms in the Emeryville Crescent North and Temescal Creek. Another major weakness is the lack of information on PCBs in relation to particle size or in the dissolved fraction. Near-term these data gaps can be filled using either the wet weather single storm reconnaissance (composite) sampling design or the wet weather single storm reconnaissance (discrete) sampling design. The discrete method is slightly better in that we would get some idea of how variable the relationships between flow and PCBs and dissolved or particulate phase may be over a storm. If these data were coupled with stage and flow measurement, we could determine a storm specific load which would help to provide a reality check on the annual scale loads estimates for each of the PMU sub-watersheds.

Long-term Monitoring

A monitoring program for accurate loads measurements was designed and implemented in the North Richmond PS by the RMP (Hunt et al., 2012; Gilbreath et al., 2015). This methodology included measurement of pump speed and duration, continuous measurement of turbidity and stage in a representative wet well, a knowledge of pump efficiency curves, and discrete sampling for laboratory analysis of pollutant concentrations including PCBs and other pollutants of interest. Although each station is configured uniquely, the methodology and lessons learned from the experience of monitoring the North Richmond PS over a two-year period provides a reasonable blueprint for monitoring design. The key question for implementation of this level of effort (the highest level as identified in the table above) is, are the uncertainties associated with the planning level modelling effort within the PMU resolved by obtaining continuous (at scales of minutes) estimates of flow and PCB load over wet season or multiple wet season timescales? And even if this would be useful data, does the time and effort taken to obtain it from the Ettie Street PS and the other attending sub watersheds of Emeryville Crescent going to change our understanding of the processes of pollutant uptake in the Bay margin? These questions need to be reconciled as we learn more about the Crescent after the first phase of data collection or as we continue to work on other PMUs such as San Leandro Bay where further insights will be gained as to the sensitivity of the model of Bay margin processes to data weaknesses.

Another group within the RMP, the Small Tributaries Loadings Strategy Team is presently grappling with how to design a trends monitoring program for urban creeks and drainage systems to assess changes in concentrations and loadings associated with management efforts. Presently several indicators including concentrations and particle ratios are being explored using a power analysis framework and existing datasets to determine if there are optimal designs that can achieve 80% power to detect 10, 50, and 90% change over 25 years with 90% confidence. The work is still in the development phase with a draft report planned for the spring of 2016. With input from several key technical advisors, the strategy team is presently envisioning a period of data collection in several key watersheds over the next 2 to 3 wet seasons targeted to increase the representativeness of existing datasets to a wide variety
Table 2-10. Monitoring protocols available to support characterization of concentrations, phase distribution, particle ratios, or PCB loadings during storms.

<table>
<thead>
<tr>
<th>Name of protocol</th>
<th>Data uses</th>
<th>Relative level of effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote sampler (Walling tube/Hamlin)</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Wet weather single storm reconnaissance (composite)</td>
<td>Medium</td>
<td>Medium-high</td>
</tr>
<tr>
<td>Wet weather single storm reconnaissance (discrete) coupled with stage and flow measurement</td>
<td>Medium-high</td>
<td>High</td>
</tr>
<tr>
<td>Wet weather multi-storm discrete) coupled with stage and flow measurement</td>
<td>High</td>
<td>Very high</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data uses</th>
<th>Low</th>
<th>Medium</th>
<th>Medium-high</th>
<th>High</th>
<th>Very high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trends</td>
<td>Maybe</td>
<td>Maybe</td>
<td>Maybe</td>
<td>Yes (lower certainty)</td>
<td>Yes (high certainty)</td>
</tr>
<tr>
<td>Relative PMU sub-watershed rankings</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quantification of PCB concentrations on sediment size fractions</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quantification of dissolved phase</td>
<td>Lower certainty</td>
<td>Lower certainty</td>
<td>High certainty</td>
<td>High certainty</td>
<td></td>
</tr>
<tr>
<td>Support for RWSM to estimate loads</td>
<td>Calibration only</td>
<td>Calibration only</td>
<td>Calibration only</td>
<td>Calibration and verification</td>
<td></td>
</tr>
<tr>
<td>Measured storm specific loads</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support for dynamic model (e.g. SWMM) to estimate continuous tidal loads estimates</td>
<td>Calibration only</td>
<td>Calibration only</td>
<td>Calibration and verification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured wet season loads</td>
<td>Yes (lower certainty)</td>
<td>Yes (high certainty)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured continuous loads estimates</td>
<td>Yes (high certainty)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
of flow conditions and pollutant release processes. Such data should provide a better basis for the final design of the trends monitoring protocols. Ideally, these monitoring locations would be coupled with watersheds where it is likely that a greater level of management effort will be occurring over the next 5 to 10 years. Alternatively, monitoring associated trends could be prioritized for areas upstream from PMUs where having an understanding of change in mass loads would help us to understand any trends observed in the sediments or biota within the PMU. The best case scenario would be where all three of these things are coupled together, management effort in the watershed, a trends monitoring program downstream from where that management effort is going on, and intensified sampling in the PMU to assist our understanding of processes of biological uptake and change through time.

Monitoring Locations

The question as to whether a subset or all three watersheds need to be monitored should be considered in relation to the results of the initial modelling efforts in the priority margin unit. In relation to a sensitivity analysis of the modelling effort, what are the impacts of the uncertainty in the data that were input into the model and what are the chances of a monitoring program reducing those weaknesses with a reasonable level of effort? The data input into the model included the following:

- estimates of load in relation to varying storm sizes assuming a seven hour tidal window
- estimates of the fraction of that load in dissolved phase
- estimates of the fraction of that load that was delivered in several particle sizes

All three of these aspects of the loading estimates are currently very weak for the Ettie Street PS watershed and even weaker for the other two tributary areas. It would be a relatively simple effort using either a remote sampler (Walling tube/ Hamlin) or the wet weather single storm reconnaissance (composite) protocols to gather information to verify the assumption that Emeryville Crescent North and Temescal Creek watersheds have lower pollution levels than Ettie Street. This would be the first line of evidence that the relative annual loading estimates are reasonable. Beyond that, and only if warranted, a much larger effort could be implemented to characterize concentrations and loads at each of these watersheds with reasonable certainty. This should only be done if the sensitivity analysis of the Bay margin model suggests improved loadings from the watersheds as a priority data gap.

The decision on how to monitor all three watersheds draining to the Crescent needs to be related to the needed priority information. It seems likely that the best method for estimating loads would be the calibration of a dynamic simulation model such as SWMM. Thus the monitoring effort chosen for each of the three watersheds should be at least sufficient to calibrate such a model. The minimum monitoring method suitable for calibrating a dynamic simulation model that is illustrated in Table 2-10 is the wet weather multi-storm discrete sampling protocol coupled with stage and flow measurement. Implementing such a protocol over a single wet season in all three watersheds would provide sufficient data for estimating loads at timescales shorter than a single tidal cycle using a model like SWMM. Obviously, if more years of data were collected, a greater accuracy would be achieved but with gradually diminishing returns. We recommend one year of data as a starting point. Since data already exist for Ettie Street PS watershed, a lower level of effort can be applied in that system that includes just enough data to evaluate concentrations of PCBs in relation to particle size and in the dissolved fraction. For the other two watersheds, samples should be collected appropriately for evaluation of PCB concentrations in relation to particle size and dissolved phase.
g. References

3. INITIAL RETENTION IN THE PMU

a. Factors influencing retention

Figure 3-1 illustrates a general conceptual model of sediment associated contaminant fate and delivery in margin areas such as the Emeryville Crescent, (“the Crescent”), with delivery via tributary channels to the water’s edge, much of the time in the intertidal zone, and subsequent deposition, resuspension, and eventual (partial) transport out of the area. This section will focus on the short term fate of discharged loads, the likely deposition zones for discharges.

Figure 3-1. General conceptual illustration of margin sediment fate

i. Tidal elevation

Numerous event-specific factors will affect the location of initial discharge to along with the percentage of PCB loads retained within the area. One major factor causing differences of up to several hundred meters in the location of initial entry into the PMU waters is the portion of the tidal cycle at which the discharge occurs. Although there will also be spring-neap tidal cycles affecting the discharge, daily average diurnal tidal cycle statistics represent a reasonable starting point for characterizing the probable average locations of discharge over multiple decades.

Error! Reference source not found. illustrates the MHHW (mean higher high water), MHW (mean high water), MSL (mean sea level), MLW (mean low water), and MLLW (mean lower low water) tidal elevations within the Crescent, with about 500 m separating the points of entry for Temescal and Ettie St. PS/Emeryville North watersheds at MHHW vs MLLW. Although there has been a study linking lunar phases to atmospheric pressure and thus precipitation probability (Kohyama & Wallace 2016), the timing and duration of storm events is largely independent of tidal influences, so the occurrence of a discharge at any given tidal elevation is probably best modeled as a random function of time. The
probability of discharge at any given tidal elevation is not uniform however; given the sinusoidal pattern of tides, elevations near high and low slack are disproportionately included. If we divide each tidal cycle into four equal duration periods, max flood, high, max ebb, and low, the periods around high and low slack will each account for one quarter of the total time, but around 15\% of the total elevation range. Thus there is a slight propensity towards discharge at the upper and lower ends of tidal elevation under a random timing assumption.

Figure 3-2. Tidal datums in the Crescent. MLLW, MLW, MSL, MHW, and MHHW indicated by colored contours, from darkest (blue) to lightest (yellow), respectively.

ii. Settling rates

In addition to the timing and thus location of discharge, the propensity of discharged loads to remain in the Crescent will depend on the characteristics of the discharged loads. A settling experiment in a previous study of stormwater samples from Hayward Z4LA and a Richmond storm drain (Yee & McKee 2010) indicated that approximately between 30\% to 70\% (towards the higher end at higher flows) of PCBs would settle out of a 30 cm settling column within 20 minutes, or roughly 1 m/hr settling. Typically half to two-thirds of that total (again on the higher end for higher flow and higher concentration samples) settled out within 2 minutes (10 m/hr).
Given tidal currents and wind waves in the natural environment, a laboratory settling column is relatively quiescent compared to open Bay waters much of the time. However, the settling rates obtained represent an upper bound of likely deposition in the near field of any discharge. Much of the Crescent is very shallow, less than 1 m deep at MLLW. Even as the water depth (and thus the entry point into the receiving water) varies during each tidal cycle, the vertical distance required for settling to the bottom remains largely unchanged, with the bottom slope approximately constant through much of the intertidal zone (as seen in fairly even spacing of the MSL, MWL, and MLLW tidal elevations from north to south along the eastern shore).

iii. Transport

Another major factor to consider in predicting the short-term fate of pollutants and sediment discharged to the Crescent is the speed of advective flows leaving the area. The ebb tide, occurring over around 6 hours, likely represents the largest pathway for removal, at least for fine suspended sediments and dissolved phase contaminants. It occurs twice daily, largely independent of any watershed flows, so for the majority of days in each year where there is only baseflow, tidal transport still occurs. Even for coarser grained sediments only mobilized by large freshwater flow events or strong wave resuspension, such events would require concurrent outgoing tides to export appreciable mass before these coarser sediments settle out again. Although the volume in the Crescent at MLLW after an ebb is only 1/6 that at MHHW, a proportion of that will return on the subsequent flood. An estimate of the returning portion will be discussed in a later section on an exploratory hydrodynamic model of the Crescent.

b. Comparison to Other SF Bay Margin Areas

Comparisons to other PCB contaminated areas within SF Bay are illustrative of these factors. Seaplane Lagoon at Alameda Naval Air Station (ANAS) represents one end of the spectrum (Figure 3-3). It is a small (4.5x10^5 m^2), highly-enclosed (only one 250 m wide opening behind a seawall), and relatively deep (6-7 m at MLLW) site, compared to more natural shorelines in the Bay, where depths often do not exceed 2 to 3 m for several hundred meters from shore. Stormwater and industrial wastewater from ANAS were discharged to Seaplane Lagoon from outfalls in the NE and NW corners, resulting in contamination by radium and PCBs, among other contaminants (Love et al., 2003, U.S. Navy, 2008). The ANAS was only 6.6x10^5 m^2 in area, slightly larger than the receiving water, so runoff discharge would likely be only slightly greater in volume than direct precipitation to the lagoon, with low velocity, due to entry into a steep-shored deep receiving water. As a result, the PCB contamination gradients from the outfalls of ANAS are short and steep (dropping to near background within <100 m) (Figure 8a), with little redistribution within the site due to its constructed depth (favoring net accretion) combined with limited wave and current action resulting from the constructed seawall.
Figure 3-3 Bubble plots of sediment PCB concentration distributions around a. Seaplane Lagoon, ANAS
Hunters Point Shipyard (HPS) South Basin represents an environment physically similar in some aspects to the Crescent (U.S. Navy, 2007). South Basin is U-shaped, with the width of its opening of a similar magnitude to the length of the embayment, and freshwater discharge from its upper end. Its maximum depth is 2 m, with a gradual shoreline slope in much of the intertidal area. Most freshwater discharge occurs from Yosemite Creek, at the NW end of the embayment. However, unlike the Crescent, where the freshwater discharge is presumed to deliver much of the primary PCB source, much of the PCB contamination source at HPS originated from landfills present during different periods. One existed at the NW near the mouth of Yosemite Creek, and a more recent one at the NE shoreline of South Basin, both of which received various wastes including PCB-containing transformer oils during their periods of operation. The primary advective transport in the surface water would therefore occur with tidal flows concurrent with resuspension events, or with tidal flows supplemented by stormwater for Yosemite Creek. PCB gradients in this area are longer than at ANAS (Figure 3-4), likely due to the shallow shoreline and gradual slope, allowing greater resuspension and tidal dispersion of sediments. The contamination contours in the area near the mouth of Yosemite Creek are somewhat stretched out relative to those from the more recent (NE) landfill without major freshwater inputs (Figure 3-5), suggesting some influence of freshwater and tidal flows via the channel.
Figure 3-5. Contour map of surface sediment PCB contamination around Hunters Point Shipyard. Note slight elongation of contamination field extending from Yosemite Creek.
San Leandro Bay (SLB) is somewhat similar to ANAS Seaplane Lagoon in having a very constricted connection to the Bay, and thus highly protected from strong waves and tidal currents in its interior. However, unlike ANAS, it receives discharge from a moderately large upland watershed, San Leandro Creek, and is shallow though much of its area (Daum et al., 2000). Numerous smaller watersheds also discharge to SLB, with many of them including older industrial areas with known or potential past PCB usage or disposal, include a Pacific Union yard along Damon Slough currently being investigated by EPA. As such, it may present a very complex picture of PCB sources to deconvolute. Nonetheless, there are some hints of possible gradients extending away from upland sources, for example a drop in PCBs with distance from the mouth of San Leandro Creek (Figure 3-6). Similarly, there is a moderately stretched out gradient away from a highly contaminated site near Coast Guard Island in Alameda Channel, where tidal currents and constricted area for dispersion may extend observed gradients.

Figure 3-6. Bubble plots of sediment PCB concentration distributions around San Leandro Bay
Steinberger Slough represents another end of the spectrum, with a very narrow water body (a long, snaking tidal slough) receiving discharge from a variety of small and large watersheds. This area includes some older industrial areas bordering the Bay shoreline. Much of the area has been converted to newer commercial or residential developments, but includes sites such as Delta Star, an electrical equipment facility that provided some PCB-containing products under its previous operator, H.K. Porter (SFBRWQCB, 1999). There are other potential PCB sources in the surrounding formerly industrial areas, so like San Leandro Bay, it may not be a simple case of a single PCB source dominating. However, the large upland watersheds and relatively narrow receiving water in the immediate vicinity of the likely discharges would result in more pronounced outward flow and less dispersion during storm events as compared to areas of the Bay with discharge to more open shorelines and wide-mouthed embayments such as the Crescent. The relatively slower drop off in PCB concentrations with distance as compared to other sites (Figure 3-7) is suggestive of this greater advective transport and reduced dilution or dispersion of contamination until reaching the open bay, with evidence of greater dilution or dispersion.
in the direction of a larger receiving water (i.e., the steeper gradient decreasing towards the Port of Redwood City). The details of PCB sources and the directions of stormwater and tidal flows is likely complex in this area, but the PCB distribution at least is in concurrence with our expectations for a receiving water with more channelized flow characteristics.

c. Hydrodynamic modeling

Several exploratory analyses have been carried out using a hydrodynamic model. The simulation is based on a SUNTANS hydrodynamic model, and includes tidal forcing in the coastal ocean, outflows from major rivers, and a simplified wind field. Based on these inputs, the model predicts sea surface height and depth-averaged current velocity. While a model specifically calibrated for the Crescent is beyond the scope of the present study, this model has been validated for tides and currents at a wide range of stations in Central Bay, South Bay and San Pablo Bay, and captures the Crescent with roughly 100 m grid resolution. The model output has been analyzed for two specific purposes, (i) extracting local tidal datums for the Crescent, and (ii) characterizing tidal velocities and transport within the Crescent.

Tidal datums have been extracted from a year of model output for a point centered on the mouth of the Crescent. These elevations are tied to the NAVD88 vertical datum, allowing for direct comparison to tide gages around the Bay. The results are summarized in Table 3-1, which also includes comparable tidal datums at the San Francisco Fort Point tide gage. The results show a small super-elevation of the mean water level, and an 8% amplification in mean tidal range (MHW-MLW).

<table>
<thead>
<tr>
<th>Datum</th>
<th>Crescent (m NAVD88)</th>
<th>Fort Point (m NAVD88)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLLW</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>MLW</td>
<td>0.32</td>
<td>0.36</td>
</tr>
<tr>
<td>MSL</td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td>MHW</td>
<td>1.67</td>
<td>1.61</td>
</tr>
<tr>
<td>MHHW</td>
<td>1.85</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Velocity data have been extracted from the model for a period of 15 days (March 29, 2016 to April 13, 2016) in order to average over spring-neap variations in tides. The largest velocities occur near the mouth of the Crescent on the deeper (northern) side (Figure 3-8). Tides here are approximately symmetric, with no obvious flood or ebb dominance. Current speeds range from a neap-tide small ebb of 200 m/h, to a neap-tide large ebb of 400 m/h and spring-tide large ebb of 700 m/h. Similar metrics for a site in the intertidal eastern end of the Crescent show transient, peaky velocities, with maximum speeds about 30% lower than the speeds at the mouth, but average speeds (averaged over the portion of the ebb when the area is inundated) about 50% lower than at the mouth.
In many tidal flows the mean transport over the course of a full flood-ebb tidal cycle is much smaller than the transport during a single ebb since the subsequent flood tide will “unwind” the transport in the ebb. When spatial variation in currents is small, the long-term mean of the velocity field is a good approximation to this mean transport. In the case of the Crescent, currents vary inside versus outside the Crescent, and it is necessary to more explicitly follow the path of a water parcel advected by the currents over a tidal cycle. Figure 3-9 shows the result of such an analysis over an ebb-flood cycle during intermediate spring-neap conditions. The fraction of trajectories which are still within the Crescent at the end of the tidal cycle implies that about 30% of the Crescent’s volume is retained, primarily the water mass which started in the shallowest portions of the Crescent (black circles). Most of the water mass exits the Crescent and is advected southward by strong residual velocities outside the Crescent. Those parcels which do reenter the Crescent systematically shift clockwise within the crescent (i.e. the spatial distribution of the black circles to the red squares within the Crescent). The green-yellow transition in the background of the figure denotes the intertidal-subtidal transition at spring tides.
d. Retention in moderate and large storms

The distance that suspended sediments in stormwater are carried will be highly dependent on the volume and velocity of the discharge, and the velocity of the receiving water (e.g., whether it is a high or low slack, flood, or ebb tide). Assuming that the discharge is occurring into a static water body (a slack tide) gives us at least a sense of scale for the likely discharge velocity extending into the Crescent. We consider the cases of 1 year and 10 year annual return interval (ARI) rainfall events to derive reasonable bounds for the volumes of discharge to the Crescent.
The 24 hour rainfall from a 1 year ARI storm event obtained from the NOAA record for Oakland indicates precipitation of about 1.9 inches (Table 2). Data on rainfall from the Oakland Museum (supplemented by rain gauge data from Oakland Airport and Alameda where there were gaps) over a 40 year period (1970 to 2010) suggest a slightly lower but similar rainfall for the 40th largest day, 1.75 inches. Using runoff coefficients for the various land uses and running the RWSM, we estimated daily outflows of 117,000 m3 from the Ettie St. PS/Emeryville North watershed, and 475,000 m3 in total from all the watersheds in the Crescent for the 1 year ARI rainfall. A 10 year ARI 24 hour storm event (a threshold above which there are typically only 4 events in a 40 year history) will deliver about double the volume, 243,000 m3 per day for Ettie St. PS/Emeryville North, and 985,000 m3 for all of the Crescent.

Interestingly, the cumulative rainfall of all events greater than the 1 year ARI event in the 40 year Oakland Museum rain gauge data series combined accounts for only 8% of the 40 year total. Thus although these events individually deliver relatively large volumes of discharge with potentially large short term impacts, considered on a multi-decadal basis, missing these largest events may have a relatively small impact on estimated loads, at least for highly impervious urbanized watersheds. The same might not be said for more pervious watersheds, where small precipitation events are simply absorbed into the landscape. There are also non-linear relationships between runoff and sediment loads for pervious watersheds, with higher flows delivering sediments disproportionate to their volume. However, the same would not be expected for constructed stormwater conveyances, which are generally designed to be self-cleaning. Unlike situations such as the New Almaden Mining District where landslides and bank erosion could result in increasing (and seemingly limitless, at least in the short term) delivery of mercury contaminated sediments with increasing flow, PCBs in urban conveyances are likely source-limited in the short term. Once recent build-ups are scoured, additional flow may deliver lower (perhaps negligible) additional loads until sufficient time has occurred for further release and build up.

The daily volume delivered to the Crescent in a 1 year ARI event is slightly less than the volume in the Crescent at MLLW (580,000 m3). Thus even if the delivery of an entire 1 year ARI 24 hour event’s discharge occurred in the hours immediately preceding and around low ebb, the discharged volume would still be approximately contained within the Crescent. Some dispersion and dilution would occur with the outermost waters delivered, but it is likely that much of the very rapid (~10 m/hr) and moderately (~1 m/hr) settling sediments containing the majority of PCBs measured in Hayward and Richmond previously reported (Yee & McKee 2010) would settle out before reaching the edge of the Crescent. These settling rates are much larger than those reported for the previous whole Bay one box model, but this may be reasonable; those average settling rates represent sediments that can remain largely suspended day-to-day in the Bay simply through typical tidal and wave action, whereas storm discharges represent episodic higher velocity discharges, of which only a portion may remain suspended under normal tidal and wave action.

The delivery of a 1 year ARI daily total discharge in the last hours of an ebb tide are not highly probable however. An estimated rainfall of 1.85 inches over 3 hours represents a 25 year ARI event, and 1.87 inches over 6 hours represents a 5 year ARI event. Although the trajectory of water starting from the MLLW line at high slack (Figure 3-9) does exit the Crescent, that travel path does not apply to water starting from that location later in the tidal cycle. Water discharged at the MLLW line at low slack would quickly be sent back with the incoming flood tide. Waters discharged earlier in the tidal cycle start further east, and thus much of that water also returns on the subsequent flood tide. Net export would require material at the MLLW line to roughly remain in place (i.e., settled out) during flood tide then
require resuspension of sediment in place at that point during ebb tide (beneath ~1 m of water at high slack), with sufficient energy to keep it suspended until exit from the Crescent.

The volume of water delivered in a 10 year ARI daily rainfall event, 985,000 m³, is nearly double the volume of the Crescent at MLLW. However, the probability that it would occur on a single tidal cycle to push out of the Crescent is very low. The 10 year ARI daily rainfall, 3.75 inches, is greater than a 1000 year ARI for 3 hour total event (3.07 inches), and greater than a 200 year ARI for a 6 hour event total (3.63 inches). Thus although half of the volume of a 10 year ARI would be forced out of the Crescent if delivered all at once, it is highly unlikely that it could occur within 6 hours to be discharged on a single tidal ebb. It would be more likely to occur at a lower intensity, requiring two or more tidal cycles to disperse and export the discharge.

The unsettled fraction (<1 m/hr settling rate) in the BMP evaluation project (Yee & McKee 2010), 30% to 70% of stormwater total PCBs, provides an alternative reasonable estimate of the portion of PCB loads that might not be retained within the Crescent in the short term. Although this unsettled fraction may not be immediately delivered out of the area, while it remains unsettled, it can continuously disperse, dilute, and be advectively transported, and thus eventually be carried out of the Crescent after a number of tidal cycles. Quantifying the export rate for this fraction would require hydrodynamic modeling beyond the scope of this effort, but a roughly calibrated (focused mainly on generating approximately correct tidal heights) SUNTANS simulation of the Crescent suggests that about 30% of the volume in the Crescent at high tide returns on the subsequent flood. Therefore, an assumption of 70% loss of any dissolved or unsettled fraction on each tidal cycle appears to be a reasonable estimate. After 10 tidal cycles (5 days), only 3% of this initial unsettled fraction would remain, so it may be reasonable to approximate that this unsettled fraction effectively was immediately lost from the Crescent. A simple mass budget model in the following section will evaluate the impacts of various assumptions for PCB loads and concentrations inside and outside of the Crescent on net tidal export.

e. Hypothesized initial deposition pattern

We have not found data on gradients of PCBs in sediments in or around the Crescent, but here we attempt to make educated guesses as to where the highest concentrations might be found, in order to design future monitoring efforts. As mentioned previously, due to the sinusoidal pattern of tidal cycles, the time spent at the upper and lower end of the tidal range is greater than would be obtained from a uniform probability distribution. Thus the location of initial discharge to the Crescent will be somewhat weighted toward elevations nearer MHW and MLW, if we assume discharges will occur at random times.

With 30% to 70% of the PCBs settling at a rate of 1 m/hr or more in lab experiments, and half to 2/3 of that fraction settling at over 10 m/hr, a large proportion of the total PCBs in sediments from any given discharge would be expected to rapidly drop out of the water column and be found near their entry point in the PMU. This fast settling fraction would especially be expected to be found in the near field; most of the Crescent is less than 1 m depth at MLLW, and even at higher tides, many discharges will occur at the edge of the water line in the shallow sloped intertidal zone (i.e., discharged into a depth < 1 m), and thus require little vertical settling distance to reach the bottom. Thus the axial travel distance of discharges in the first 0.1 hour (6 minutes) and 1 hour after entry can provide hints of the likely location of the majority of discharged contaminated sediments.
In order to estimate travel distances, velocities of discharges into the receiving water are needed. Measurements of discharge velocity in these tributary channels are not available, but as a start, we modeled a semicircular cross section with a width of about 4 m for the Ettie St. PS/Emeryville North watershed based on natural channels for similarly sized watersheds in the region. This resulted in an average flow velocity of around 1.7 m/sec, assuming the discharge from a 1 year ARI rainfall occurred entirely within 3 hours, or that a 10 year ARI rainfall discharged within 6 hours. These velocities, near 2 m/sec, appear reasonable based on observed storm flow rates in other watersheds. Thus for Temescal and a hypothetical combined watershed, we assumed that the average flow velocity would be about the same, and thus scaled the channel cross sectional area proportional to total flow to yield the same linear velocities. Higher velocities will tend to erode natural channels and thus self-enlarge their cross sectional areas, so similar maximum channel velocities may be a reasonable first approximation.

In order to estimate the distance over which the exit velocity of these streams carried, we applied heuristic empirical calculations derived for turbulent jets (Cushman-Roisin, 2014). Typically these calculations are applied to idealized scenarios of entry into a completely enveloping volume of the same fluid, conditions not strictly met in this case, as the flow is constrained by the air/water and air/sediment interfaces, and the discharge is freshwater, while the receiving water is saltwater or brackish. Nonetheless, these calculations can provide a rough sense of the scale over which discharged sediments might be initially carried. The maximum velocity ($umax$) along the main discharge axis and mean velocity ($umean$) across at any given distance x can be estimated as a function of the jet outlet diameter, d, and the average velocity at the outlet, U:

$$umax(x) = 5 \frac{d U}{x}$$
$$umean(x) = 2.5 \frac{d U}{x}$$

In this equation x is the distance from a virtual point outlet, which occurs 2.5 d upstream of the actual outlet. At large distances from the actual outlet, the error of ignoring this factor is small (e.g., ~2.5% at 100 diameters downstream), but at shorter distances, using the distance from the actual rather than the virtual point outlet yields very large errors (for example, at the actual outlet, using $x = 0$ rather than the correct $x = 2.5 d$ yields an undefined $umean$, rather than the correct mean velocity of U at the actual outlet).

An integration of the estimated $umax$ over the first hour of discharge for a 1 year ARI rainfall discharged over 3 hours for Emeryville North suggests a maximum travel distance of around 500 m for an hour of flow along the main axis. With a mean velocity 50% of the maximum, the mean travel distance of the discharged mass would be about 70% of that (square root of 50%), or 350 m. The discharge jet of the combined watersheds can be estimated in two ways. If the rest of the Crescent discharge is assumed to come from Temescal Creek, with the outlet diameter scaled to yield the same maximum flow rate (~1.7 m/sec), the maximum one hour travel distance on the main axis of that discharge would be 660 m, or 470 m for the mean mass. The two channels meet near the bottom of the intertidal zone, so as a worst case scenario, we also estimated the jet for the combined watersheds considered as a single originating discharge (with channel diameter adjusted to yield the same linear velocity at the outlet). A larger single outlet yields greater velocities at distance than numerous smaller outlets discharging the same volume, so this likely overestimates the travel distance for the Ettie St. PS/Emeryville North and Temescal discharges combined. The one hour maximum travel distance for this hypothetical combined discharge jet was 710 m, or 500 m for the averaged mass. The zone of greatest concentration on initial discharge will be in the cone downstream of the discharge, over a width about 40% of the distance from the virtual outlet, with the highest concentrations near the central axis of the discharge. These hypothetical cones of
discharge are overlaid as yellow triangles on the PMU map in Figure 3-10 for discharges from Temescal and Ettie PS/Emeryville North at high slack (near the MHHW line), and a hypothetical combined flow for the watersheds extending from the low slack (near the MLLW line) entry point. Because discharges may occur at random points in the tidal cycle, a hypothetical area connecting these potential deposit cones between MLLW and MHHW represent our best guess as to where the most elevated concentrations might be found.

![Figure 3-10](image)

Figure 3-10. Hypothesized short-term deposition zones. Yellow triangles represent 1 hour settling areas for a combined outflow at MLLW, or Temescal and Ettie PS/Emeryville North separately at MHHW. Yellow dotted lines delineate approximate aggregated area assuming discharges are randomly distributed over time between these tidal elevations. Red triangles indicate fast settling (0.1 hour) areas for location. Zones connecting these areas not shown, but would generally follow along the main channels through the intertidal zone.

Similarly, the travel distance of a fast settling fraction can be estimated from previous settling studies for the BMP project. With a settling rate of 10 m/hr or faster, only 6 minutes would be required for sediment to drop out of a 1 m water column. Calculated maximum travel distances for Ettie St. PS/Emeryville North St, Temescal, and a combined discharge range from 160 to 220 m for this 1 m drop, so we would expect a sizable proportion (around 15 to 50%) of discharged PCBs to be initially found in
the very near field, and several hundred meters beyond the entry point at MLLW at the furthest. These zones are marked in Figure 11 as red triangles. Over time, resuspension and tidal currents will tend to disperse the initial discharge deposits, but some signal of the initial deposits may remain, especially for heavier discharged sediments, particularly in areas at the upper end of the tidal range, which would be subject to resuspension and transport for a lower proportion of time. Vegetated areas would similarly see less reworking as they are typically even higher in elevation, and the vegetation would dissipate wave energy and buffer tidal flows that might otherwise carry away contaminated sediments.

f. Monitoring recommendations

Recommendations for initial monitoring depend ultimately on the questions to be answered. If the primary objective is to identify locations for monitoring disproportionately influenced by recent initial discharge from the watersheds, the focus should be in the near field of discharge channels from the watershed of interest, and particularly high in the intertidal zone where the time for resuspension is reduced. Thus for Ettie St. PS/Emeryville North, we would want to examine within the first 200 m of the various potential high and low tide discharge points, since we wouldn’t necessarily know when and where the largest discharge events occurred. The point of entry at low tide is near the entry point for the Temescal watershed, so any signal would likely be diluted out by that flow, as well as being subject to resuspension and tidal transport for a greater proportion of time. Concentrations would tend to be higher near the center of the outflow, but not necessarily at the center of the flow channel itself, which may scour during high flow events. A monitoring plan for confirming a conceptual model of initial discharge would focus on a grid or array of transects around the discharge channel, with samples near the central axis of the discharge channel at regular intervals (e.g., every ~200 m or so) from its entry points at MHW to MLW, and transects off that central axis through the intertidal zone, and then transects around the 0.1 hour and 1 hour maximum travel distances in the subtidal zone (around 200 m and 700 m respectively). Samples collected near the end of a wet season would capture the cumulative effect of multiple storms; passive sediment traps or passive samplers would be useful for characterizing new deposition. In contrast, shallow surface sediment grabs would better reflect the combined effects of short-term environmental processes (e.g., including bioturbation). For the latter, the depth of sample analyzed would be very critical. Too deep of a sample could integrate several years’ or decades’ environmental processes, and thus dilute out possible signals of change. Too shallow of a grab might mainly capture only late season deposits and thus represent a net result of only late wet season resuspension and redeposition rather than a total of wet season loads and processes.

If instead the primary focus is trying to understand the ongoing and prospective environmental exposure of biosentinel species of interest, then a sampling plan should be built around the habitat utilization profile of that species, with grid or random stratified sampling of the habitat of interest. A hybrid approach might incorporate elements from that for characterization of discharge deposits, e.g., distributed through the habitat, but at higher intensity near the discharge channels. Inevitably, there may be compromises in any combined approaches; exposure assessment may require either shallower or deeper samples, tailored to specific species. Conversely, samples optimized for detecting trends in recent discharges might not include enough or any of the legacy sediment contributing exposure, and thus under-estimate continued long-term risk from bioturbation and episodic resuspension. Sediment cores or passive sampler profiles might be able to capture both, but incur higher analytical costs (roughly proportional to the number of discrete sections analyzed). The “right” approach for monitoring given limited resources therefore depends highly on management priorities. Plans for longer term monitoring are also highly dependent on relative priorities for different types of information. Presumably, whatever
type of data is collected in the short term, similar information would be desired in the future as indicators of status and/or trend.

References

4. **LONG-TERM FATE IN THE PMU (DON)**

 a. Fate conceptual model

 As mentioned in the previous section, the indicators of interest are dependent on the prioritization among various questions to be answered. For biotic exposure, we may be interested in the entire zone of sediment utilized by a species. For characterizing effects of watershed management, we may be most interested in characterizing recent sediments, occurring after actions have been taken. Addressing different objectives may require taking different types of samples, or recognizing the limitations and compromises of approaches that attempt to combine objectives.

 i. Simple box model

 A recent fate model employed by Dr. Frank Gobas’ group at Trent University models the exposure and bioaccumulation of persistent organic pollutants (POPs) by organisms exposed to a heterogeneous mix of contamination. This model is similar to that group’s previous fugacity-based exposure models, with the main change being the ability to explicitly model exposure from different zones, rather than derive a single spatially averaged exposure. Conceptually the Crescent can be broken up into three zones, the vegetated intertidal marsh, the unvegetated intertidal mudflat, and the always submerged subtidal zone. Some species such as small prey fish may occupy all these habitats at different times (e.g., when the water depth is appropriate). Others may be more restricted to one or two of these zones, or even just one portion of one of the zones (e.g., the portion of mudflat below MLLW for organisms preferring or requiring cooler and constantly submerged conditions). The Gobas multi-compartment model currently only considers the biological exposure and fate aspects of POP fate, so the environmental concentrations of the contaminants of interest are required input parameters for each of the compartments. Work is underway to develop a model of abiotic fate and transport to link with the biotic model, but for the short term, we would need to use empirical data or separately devise a simple model of contaminant fate.

 ii. Congeners considered

 Currently there are few data on environmental concentrations of PCBs in the Crescent. Therefore, for this exercise, we consider a simple one-box fate model using input parameters for the Crescent and a possible range of starting ambient sediment PCBs concentrations in the Crescent. Following the approach used in the whole-Bay one box model of PCB fate (Davis 2004) we first consider the fate of PCB 118, while acknowledging the uncertainty bands of having selected only one representative congener. The fate using the physico-chemical properties of select lighter and heavier congeners is later examined. Ultimately, each of the congeners could be considered and modeled separately, which would likely illustrate slightly different evolution of the fate profiles for the various congeners. However, that is a bigger effort to be considered for the future (e.g., to model fate of specific dioxin-like PCBs, or to calibrate to observed congener profiles in discharges versus the ambient sediment in the Crescent). Another likely even larger challenge is to develop fate models for the different sub-habitats within the Crescent. Transport of sediments and contaminants between these habitat compartments is not continuous, so devising schemes for representing and estimating rates for these transfers (even on a pseudo-continuous time-averaged basis) presents a significant challenge. The mass budget presented here therefore represents primarily an initial scoping effort to evaluate the magnitudes of loading changes and the likely range of responses in the environment that might be observed, for different assumptions of critical environmental parameters.

 b. Mass budget
A conceptual illustration of the components in the simple mass budget model is shown in Figure 4-1. Currently, one very large uncertainty is the initial inventory of PCBs in the Crescent. One large element of that uncertainty is the limited availability of sediment PCB data for the area. Currently we have PCB data only for a few sites outside of the Crescent PMU, but nearby. Nearby sites range from around 10 ng/g near the end of Berkeley Pier, to 20 ng/g in Oakland Harbor just to the south, to around 36 ng/g at Emeryville Marina. We therefore considered concentrations between 10 ng/g and 50 ng/g as a possible range for the Crescent average to use in a one box fate model. The second large element of uncertainty is the depth of the “active” sediment layer, which impacts the calculated inventory. In the Bay one box fate model, an active sediment layer depth of 15 cm was used. We therefore use 15 cm as our baseline assumption here, but consider alternative depths of 5, 10, 20, and 25 cm. Table 4-1 presents the range of PCB mass inventories for assumptions covering this range of active layer depths and average PCB concentrations. Since the estimated inventory is a product of the sediment volume (proportional to mixed layer depth) and sediment concentration, the calculated initial inventory is linearly proportional to both these parameters. Given the concentrations at nearby Emeryville Marina (36 ng/g) and Oakland Harbor (20 ng/g), a base case assumption in that range combined with a 15 cm mixed layer used in the Bay model may be a reasonable starting point. Other underlying assumptions and parameters used for this simple model will be discussed in the following section.

Figure 4-1. PCB Fate Conceptual Model (from Davis, 2004)
Table 4-1. Mass budget starting sediment PCB mass (kg), varying assumptions of initial PCB concentration and mixed layer depth

<table>
<thead>
<tr>
<th></th>
<th>10ng/g</th>
<th>20ng/g</th>
<th>30ng/g</th>
<th>40ng/g</th>
<th>50ng/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>5cm</td>
<td>0.4</td>
<td>0.9</td>
<td>1.3</td>
<td>1.8</td>
<td>2.2</td>
</tr>
<tr>
<td>10cm</td>
<td>0.9</td>
<td>1.8</td>
<td>2.7</td>
<td>3.6</td>
<td>4.5</td>
</tr>
<tr>
<td>15cm</td>
<td>1.3</td>
<td>2.7</td>
<td>4.0</td>
<td>5.4</td>
<td>6.7</td>
</tr>
<tr>
<td>20cm</td>
<td>1.8</td>
<td>3.6</td>
<td>5.4</td>
<td>7.2</td>
<td>8.9</td>
</tr>
<tr>
<td>25cm</td>
<td>2.2</td>
<td>4.5</td>
<td>6.7</td>
<td>8.9</td>
<td>11.2</td>
</tr>
</tbody>
</table>

1. Inputs

Inputs of PCBs to the Crescent originate either from the surrounding watersheds, or from adjacent areas in Central Bay. Section XX described the process for calculating average annual PCB loads from these watersheds, using long term precipitation records, runoff coefficients for various land uses, and a flow-proportional (i.e., constant water concentration) assumption, yielding 214 g per year. For our base case scenario we assume that this entire annual load remains and is incorporated into the Crescent inventory. For 1 year ARI events and smaller, which account for the vast majority of the overall load, this complete retention assumption may be reasonable, as the previous discussion on discharge jet extents suggest discharged volume would remain largely in the Crescent, even if discharged at MLLW. A reasonable alternative scenario is to assume that the portion that settles at rates < 1 m/hr in a quiescent lab scenario will not settle at all in the ambient environment with tidal currents, wind waves, and other forces tending to keep particles in suspension. With 30% to 70% of PCBs slowly or not settling in a lab setting, a 50% reduction in watershed loads from the base case can illustrate the impact of reduced initial retention on long term fate. Impacts of lowered loads from lowering estimated retention of initial loads will be examined in the discussion of the influence of external loads on mass budget model outputs later.

RMP station BC10 is nearby, and may represent a reasonable long term record of ambient Bay water concentrations exchanging with the Crescent. Total water PCBs at BC10 have averaged around 200 pg/L in samples collected since 2006. Due to the shallowness of the Crescent, its tidal prism is nearly 5/6 of its total volume at MHHW. Although some of the water returning on each flood tide was exported on the previous ebb tide, as described previously in Section XX on preliminary hydrodynamic modeling, a majority of water entering is from the adjacent open Bay. Combining approximately twice daily tidal volumes with the adjacent BC10 water concentrations, an estimated 1.2 g of PCBs is supplied to the Crescent per day, about double the daily averaged loading rate from the watersheds. Using the full tidal prism of the Crescent likely overestimates the tidal exchange somewhat. Although the majority of the Crescent empties on the ebb tide, about 30% of that returns on the subsequent flood, so the “new” water exchanged is effectively about 70% of the tidal prism. The watershed loads are episodic and associated primarily with storm events, so on any given day during the rainy season, watershed inputs may dominate, but in considering multi-decadal fate, the long-term average load is more important than capturing any single event.

2. Internal processes

Important internal processes affecting the long term fate of contaminants are the mixing and dispersion of bed sediments, and the settling and resuspension of sediments in the water column. For the purposes of the one-box model as an integrative framework for assessing available data and gaps and
uncertainties, the Crescent is treated as a single homogenous compartment, but we recognize that persistent heterogeneous contaminant distributions at other sites illustrate this is not likely the actual case. The one-box model treats the water column and mixed sediment layer each as instantaneously (within the annually averaged parameters in the model) uniform compartments. Overall this tends to accelerate likely changes; new contaminant loads are instantly spread, and exports in the water column are based on compartment-averaged concentrations rather than on integrated flux of concentrations at the boundary. Even in the case of reduced loads, the simply modeled (instantly mixing) system as a whole overall responds more quickly than in the real world. Newly deposited cleaner sediment may persist on the surface in real life, creating a faster short term response in the sub-habitat for surface feeding biota, but conversely results in slower response to the final steady state for deeper feeding organisms, and for the overall contaminant inventory. More realistic modeling of bioturbation and resuspension would transport deeper contaminated sediments to the surface only slowly, reducing their potential rate of eventual removal from the margin area. Only in the case of rapid burial would slow mixing improve the recovery rate; the deepest and presumably more contaminated sediment would be buried first and be pushed out of the zone of potential mixing. A more mechanistic handling of processes would require a multi-compartment hydrodynamic model, and a multi-compartment (both laterally and vertically) sediment fate model, a much larger effort than possible with the available data and for the scope of this conceptual model study. However, we can characterize the results of our simplifying assumptions, and how they may mis-estimate the actual environmental processes.

Although this simple model does not explicitly describe a bed sediment mixing rate, a key parameter for simulating these processes is the mixed sediment layer depth. The selection of the mixed sediment depth effectively defines the contaminant inventory and inertia of the system. A large mixed layer depth defines a large sediment mass, so new contaminant inputs are effectively diluted over a larger mass and thus averaged concentrations change slowly. Similarly, effects of decreases in loads occur more slowly, as the selection of a large mixed layer depth includes a large inventory of contamination that is presumed to continue to interact with the water column and resident biota in the long term. Conversely, a small mixed layer depth implies and small inventory and little inertia. Changes are presumed to be manifested relatively rapidly. A good selection of mixed layer depth can provide an appropriate approximation of the average system response for an indicator of interest at a whole compartment level (e.g., spatially averaged concentration, or wide scale exposure for a biosentinel species), but effects of lateral heterogeneity cannot be captured without explicit multi-compartment modeling. The whole bay model mixed sediment layer depth of 15 cm was selected as a reasonable starting point based on burrowing depths, radiotracer penetration, and other data, while recognizing that this key parameter may be spatially heterogeneous. The applicability of the same value to shallow margin areas is particularly uncertain, as the resident (bioturbating) species may differ from those in the open bay. The depth of wave driven sediment mixing also differs from that in the open Bay, perhaps episodically much larger, due to the shallowness of much of the area. Localized benthic surveys, and tracer horizon studies may provide some better information on sediment mixing in the area.

Water suspended solids settling and sediment resuspension are a major pathway for transfer of PCBs between the water column and bed sediment. Key parameters affecting suspended solids settling are the average water depth and the average settling rate of solids. A settling rate of 1.0 m d-1 was used as in the whole bay model, and with an average depth of 2 m for the Crescent, about one quarter the suspended solids are settled out each tidal cycle, and the PCBs in the particulate water column fraction are transferred to the sediment. However, this rate of settling would result in rapid net accretion of
sediment within the Crescent, so an offsetting resuspension rate is calculated as the difference between settling and net burial. If we presume no net burial, the settling and resuspension rates are equal. The flux of PCBs from the sediment to the water is calculated as the sediment resuspension flux multiplied by the averaged sediment concentration. A key parameter in both these rates (especially in the resuspension flux) is the suspended solids concentration. Due to the large tidal exchange for the Crescent, with the majority of its volume exiting on each tide, the influence of this parameter on net PCB export is very large (approximately linearly proportional).

3. Losses

In the whole Bay box model the base case assumption was that the burial rate was negligible or zero. Here we make the same assumption, but other assumptions can be estimated simply based on the ratio of burial rate in cm per year, relative to the mixed layer depth. For example, a 3 mm per year burial rate (approximately keeping up with sea level rise) on a 15 cm mixed sediment layer represents a 2% loss of sediment PCBs per year (the addition of 3 mm on top from the water column solids in this scenario may increase or decrease net sediment inventory, depending on initial concentrations).

Volatilization is modeled as exchange from the water column to the air. For the Crescent, due to the steep edge of much of the armored shoreline, the difference in area between MHHW and MSL is only 2%. However the exposed area at MLLW is nearly 40% of the total area, so further refinements might be to consider direct volatilization from exposed sediment or a very thin surface porewater layer. However volatilization losses only account for less than 1% loss of PCBs from the Crescent. Volatilization rates would have to increase substantially; for the current model, at the extreme, assuming that all PCBs in the Crescent were the relatively volatile congener PCB 18 still only resulted in loss rates of about 11% of PCB mass each year.

Water column and sediment degradation of PCBs is also presumed to be relatively slow; a large part of the problem with PCBs is their persistence in the environment. As in the whole Bay mass budget, we used a default half-life of 56 years. This resulted in around 1% loss of PCBs per year. Adjustments to the assumed half-life in sediment inversely proportionally increased degradation loss rates; assuming a 11 year half-life increased degradation losses to around 5% per year.

By far, the dominant factors in the PCB mass budget for the Crescent are the assumptions that directly impact advective (primarily tidal) export. With around 5/6 of the volume of the Crescent exiting and entering on each tide, and about 70% of the volume at high slack being water that was not in the Crescent on the previous high, any PCBs remaining in the water column over a tidal cycle will be rapidly lost. A critical unknown is the average water column PCB concentration of the waters that exit the Crescent on each tide and do not return. Due to the much larger spatial extent and tidal volume of SF Bay relative to its tidal prism, rather than using a whole Bay average concentration to estimate export as would be the expected case for a pure one-box model, an adjustment using the near exit station average concentration (i.e., presuming only waters near the exit leave the bay on any given tide) was made for the previous model. In contrast, for the Crescent, 70% of the total volume leaves and does not return in the short term. However, even for this small area with a larger tidal prism relative to its volume, some adjustments are needed to account for likely spatial gradients.

Because we do not have any water column PCB concentrations for the Crescent, as a first order estimate, we could assume that the steady state water column concentrations were effectively the
suspended sediment concentrations multiplied by the sediment PCB concentrations. However, with 70% of the water on each high tide not originally within the Crescent, this assumption would likely be a large overestimate. We therefore adjusted that initial estimate, assuming that the 16% of water remaining at low tides contained solids equivalent to/in steady state with those in the Crescent, with the remaining volume containing a linear blend with waters outside of the Crescent, near the long term average concentration at RMP station BC10 (around 200 pg/L total PCBs). The model in the long term is not sensitive to the assumed initial water column concentration however, as the water inventory rapidly adjusts in response to the combination of watershed loads, resuspension from bed sediment, and import/export with the open bay.

The net export is adjusted similarly to the calculation of initial concentration. The 16% of volume never leaving the Crescent is presumed in local steady state, and the remaining 84% of volume leaving ranging linearly from 100% local Crescent to 100% open Bay (BC10) water. The eastern-most waters, following the leading edge of the rising tide, have the longest duration of exposure, but much of that volume does not or just barely exits the Crescent at low tide, so the net export of that eastern fraction of waters may be near zero. The transported water generally follows a last-in-first-out (LIFO) pattern; the last waters to enter the area are those that first leave and thus had the least time to equilibrate or exchange with local sediments (as well as having a higher tidal depth, thus actually less likely to transmit wave energy to the bottom). Conversely, in addition to the 16% of waters that never leave, about 14% of the volume (that portion next most locally influenced) immediately returns, so the permanently exported volume ranges from ~0% to 83% of the steady state concentration. Assuming linear mixing, the average is the midpoint of the range, so we therefore adjusted the net tidal export to be 42% (=83%/2) of the steady state value.

Another parameter to which the modeled export is extremely sensitive is the assumed suspended sediment concentration. Using the value from the whole Bay model (8.5x10⁻⁵ kg/L), even adjusting for the assumed mixing between “new” and returning water PCB concentrations, we obtain an annual tidal export equivalent to around 1/3 of the initial sediment PCB inventory. At steady state, that exported mass is offset by import from the open bay, combined with loading from surrounding watersheds. Based on the one-box model to be discussed in the following section, the apparent half-response time is several years, but any changes in loads are relatively rapidly manifested. Given the persistence of highly contaminated areas for other sites, such rapid turnover is highly unlikely, or would require high ongoing loading rates to maintain locally elevated concentrations. Adjusting the suspended sediment concentration up or down increases and decreases the export rate respectively, so clearly a better quantification of the suspended sediment pool available for tidal export is needed to generate accurate fate scenarios for PCBs in the Crescent. In addition to better quantification of local suspended sediments in the Crescent, a more detailed model of sediment resuspension across the intertidal zone may be needed to estimate the proportion of sediments that are resuspended versus imported from outside the Crescent on the flood tide. An improved model would account for the depth and exposure time for different parcels of water entering and exiting over a tidal cycle to calculate the percentage of suspended sediments originating from local bed sediments, and ideally link to modeled or empirically mapped sediment PCB concentrations for the area.

ii. Forecasts

Figure 4-2 shows recovery trajectories for different starting sediment concentration scenarios. Based on ambient concentrations from nearby stations of around 20 ng/g (Oakland Harbor) and 36 ng/g
(Emeryville Marina), an initial concentration of around 30 ng/g was expected to represent a reasonable current steady state. Although the initial inventories of PCBs varied with the starting sediment concentration, the half-response times and the final steady state concentrations were identical, as would be expected. The current mass budget model results suggest ongoing loading rates would support ambient concentrations in the Crescent near 20 ng/g PCBs (the scenario where the final steady state inventory is nearest the initial mass). However, there are considerable uncertainties in the degree of water column exchange with the open Bay, as well as in exchange with bed sediment, extremely important parameters for the model in this area given its shallow depth, with the tidal prism constituting the majority of its total volume. The Crescent was sampled in the recent survey of margin habitats, but these samples have not yet been analyzed for PCBs due to concerns about inter-laboratory comparability. Results from these samples (one mid-intertidal, one nearly in the subtidal zone) will be important data for ground-truth validating some of the parameters and other assumptions of the model. Given the dynamic changes in depth and volume of the Crescent over the course of a tidal cycle, application of a one-box fate model may be insufficient, and various processes may need to be explicitly mechanistically modeled or otherwise approximated through additional adjustment factors (e.g., like the adjustment for LIFO tidal exchange assuming a linear gradient attempted here).

Figure 4-2. Recovery trajectories from differing starting concentrations, constant watershed & bay loading, other parameters from open bay 1 box PCB model (15 cm mixed layer, bay SSC, 1 m/day settling, no burial, etc.). Around 20 ng/g sediment concentration would be supported at steady state with current watershed and bay loads.
Figure 13b shows recovery trajectories for different watershed loading rates, assuming that initial sediment concentrations average 20 ng/g. In these scenarios, the half response times remain the same, but the final steady state masses are linearly proportional to watershed loads added to the no (0x) load case, where the only new PCBs are contributed by exchange with the open Bay. The current (1x) load scenario represents something of a worst-case assumption for current estimated loads, with 100% of the watershed load incorporated into the inventory. A reasonable alternative scenario is that about half of the total load is dissolved or not easily settled (an assumption about midway between the minimum and maximum proportion settling at <1m/hr in lab experiments), and assuming that portion of watershed load is effectively lost from the Crescent after one or more tidal cycles.

Figure 4-3. Trajectories with 20 ng/g starting concentrations, differing watershed (WS) loads, other parameters same as in Figure 4-2. In the base (1x) load case, WS load is half the tidal load from the bay.

1. Uncertainty of estimates

Like the previous whole Bay one box model, the response of the model system is highly dependent on various modeled parameters. However, given the shallowness and large tidal prism relative to volume for the Crescent, unlike the whole Bay model where the starting inventory and net sediment processes strongly affected the response and long-term trajectory, here the most influential parameters are those affecting net loading and export. Although the initial sediment concentration will affect the inventory in the short term, the base case model (Figure 4-2) for all starting bed sediment concentrations at 10 years...
is within 10% of the final steady state inventory supported by current ongoing loads. The model responds similarly quickly to increases or decreases in loads (Figure 4-3). As would be expected, given the large tidal excursion relative to total volume, adjustments to parameters affecting SSC and tidal export (i.e., the calculated average concentration adjustment factor for exported water) are highly influential, leading to nearly directly proportionally higher and lower final steady states, for lower (lower SSC, or lower concentration relative to local sediment) and higher (higher SSC or higher near local sediment concentration) export rates (Figure 4-4).

![Figure 4-4. Trajectories under base case loads, with different SSC and tidal export parameterization](image)

Factors affecting the sediment layer fate such as burial and erosion rates, and degradation rates, had only minor impact on fate, even when starting with higher sediment concentrations than would be supported by estimated ongoing loads (Figure 4-5). The differences among scenarios with burial and erosion (around average sea level rise rate, 2mm/year) and with two-fold higher and lower sediment and water degradation rates had very minor impacts on the trajectory and long-term steady state inventory. Similarly, increasing the mixed sediment layer thickness, even when compounded by higher initial sediment concentration (30 ng/g) than would be supported by current ongoing loads, shows only modest effect (Figure 4-6) of increasing the response time. The final inventories are directly affected by including larger volumes of sediment, but the final concentrations and masses relative to initial values are similar albeit slightly different (due to differing effective residence times in the mixed layer, thicker layers will have on average older and thus more degraded sediment for a given exchange rate with the water column).
The selection of congener to represent PCBs also had a moderately large influence. Ideally, rather than selecting a single congener to represent all PCBs, individual congener fates would be tracked separately. However, that would require a much higher level of effort. Given the high degree of uncertainty in other critical parameters, at this point, separate modeling of congeners is premature. However, the results of changing the physico-chemical properties to match those of lighter and heavier congeners (Figure 4-7) illustrates the large influence of water column characteristics. For lighter congeners such as PCB 18 and 66, their higher solubilities and volatilities lead to much greater outflow loss rates and lower final steady states for a given loading rate than the base PCB 118 case. Conversely, PCB 153 and 194 show higher final inventories. Separate tracking of individual PCBs may eventually be useful however; if consistent profiles for averaged loads can be established, we may be able to better calibrate or validate various modeled parameters by differentiating processes that would be more congener-specific (e.g., dissolution) versus less (e.g., resuspension).
Figure 4-6. Trajectories under base case loads using different mixed layer thickness in model, shown as masses and as percentages of initial masses. Initial sediment concentration also raised (to better show change in mass, as 20 ng/g base case is already near steady state and would show little separation among mixed layer depths)
Figure 4-7. Trajectories for different congeneris, base case loads. Differences are in solubility and volatility (degradation rates unchanged among congeners)

2. Effect of sea level rise

Sea level rise is not explicitly captured in the model, but may affect various parameters influencing fate. For example, sea level rising against a shoreline armored to protect property and transportation infrastructure will tend to drown and shrink any existing vegetated intertidal zones, extend the period that remaining intertidal zones are submerged, and thus allow greater resuspension and export. Much of the eventual fate of the Crescent will depend on whether there is sufficient sediment supply to keep up with sea level rise, but there is no scenario currently envisioned where the elevation would accrete faster than sea level rise, so retention of contaminants is most likely to remain the same or decrease in future scenarios.

c. Study recommendations

As mentioned previously in the discussion on initial retention of discharges, the distribution of sediment contamination within the Crescent is a critical data gap that should be filled as soon as possible, both for characterizing fate as well as the evaluation of status within the Crescent (which over time also can be used to evaluate any trend or trajectory). A methodical survey of contamination within the Crescent will be useful for multiple purposes, helping to highlight likely weaknesses of a simple one box approach and whether or how those weaknesses can be addressed, whether through additional adjustment factors (perhaps a simpler approach) or more explicit multi-compartment models (likely
more complex and even more data intensive). Samples can perhaps be used for multiple purposes, but as mentioned before, attention should be paid to the compromises inherent in using sample data not designed for the specific purposes to which they are applied.

A multi-box mass budget separately tracking vegetated wetlands, intertidal, and subtidal zones would represent one step up in level of complexity. In that application, it would become even more critical to characterize near-field deposition zones, and thus to establish discharge velocities and entry locations for various storm sizes and tidal stages. Similarly, finer scale tracking of sediment resuspension and transport would be needed, further amplifying the uncertainties and data needs for small-scale characterization of various parameters. At that scale a simple mass budget box model might not be practical; in calculating corrections for averaged parameters across a gradient of conditions, the complexity and effort required starts to approach that needed for generating and running a mechanistic model.

The utility or need for more complex models therefore is a critical question. The simple one box model highlighted some critical weaknesses and challenges of extending the box model framework to a smaller and more heterogeneous environment. Nonetheless, it served to highlight some major differences with the whole Bay scenario, namely the greater influence of ongoing loads on both the short-term and long-term fate. A more complex model of contaminant distributions would be useful in populating and applying a multi-compartment bioaccumulation model for example, but a question would be whether explicit modeling of fate is needed, or whether more simple approaches (e.g., bounding best and worst case assumptions) could also provide the information needed to make decisions.

Although collection of cores or other means of evaluating the vertical distribution of contaminants may be useful for validating assumptions about mixed sediment layer depth, the one-box model currently suggests relative insensitivity to these assumptions. Cores may still be useful however if there are uncertainties about or concerns about multiple species in the food web. For example, both surface deposit feeders and burrowing benthic organisms may be important components of diet for a biosentinel species, so characterization of vertical contaminant distributions can provide exposure information for both, rather than analyzing single composites too shallow for one species or too deep for another. Cores collected in less mixed vegetated or and higher elevation intertidal zones may also be useful markers of progress, even if only representing a tiny portion of overall area in the Crescent and thus not necessarily tightly linked to biological indicators of impairment. This would at least provide a measure of directional trends, even if it does not provide a complete measure of continued ongoing risk. Short of active sediment removal or addition, relatively little can be done to alter the long-term residence time of contaminated sediments, so such a narrower view of trends (i.e., essentially focusing on changing long-term loads) can provide a less pessimistic view.

If biological monitoring is similarly focused on surface feeding organisms, an analogous shallow sediment model may be useful. The current one-box model may provide acceptable estimates of long-term steady state fate, but will tend to smooth out all responses, diluting out short term surface variations, and accelerating achievement of a final steady state. However, an approach centered around a surface sediment budget would de facto require a multi-box sediment model; transport past the 0.5 cm or 1 cm sediment horizon for example would not likely be “buried” in any real sense on a multi-decadal scale, so some estimate of transport of deeper sediment and contaminants back into the surface sediment compartment would be needed. Even if sediment transport across the interface with deeper sediment is
not explicitly mechanistically modeled, separate tracking of the deeper layer and transfers of contaminant to and from the surface layer would be needed to not ignore the ongoing risk from legacy contamination. Again, the utility of different types of information depends critically on the questions to be answered, so differentiation of critically needed versus intellectually interesting information is needed given limited resources.

References

5. Bioaccumulation

a. Background and General Concepts

PCB exposure in Bay species at higher trophic levels occurs primarily through the diet. An understanding of biota life histories (diet, feeding strategy, movement, and lifespan) and the structure of the food web is therefore essential to understanding the current and future influence of tributary PCB loads on impairment of beneficial uses in the Crescent.

There appears to be a complete lack of data on PCB bioaccumulation from this area, and little information on the occurrence of species of greatest interest. However, a tentative and rudimentary picture of the food web can be constructed based on the limited data that are available, supplemented by data from nearby areas (Figure 5-1).

RMP prey fish sampling established Mississippi silverside (*Menidia audens*) and topsmelt (*Atherinops affinis*) as valuable indicator species for evaluating spatial patterns of mercury and PCB contamination (Greenfield and Allen 2013, Greenfield et al. 2013a,b). The sampling effort targeting these two species provided thorough coverage of the Bay, with topsmelt occurring more frequently at sites in Central Bay (Figures 5-2 and 5-3). Given budget constraints, PCBs were only measured at a subset of the total number of prey fish stations sampled (Figure 5-4). Even with this limited dataset, however, Greenfield and Allen (2013) were able to establish a correlation between PCB concentrations in silverside and topsmelt and concentrations at nearby RMP sediment sampling locations (Figure 5-5). These biosentinel species can therefore be linked, via sediment, to PCB exports from local watersheds.

RMP prey fish sampling did obtain samples in the Emeryville Crescent PMU - in fact, both silverside and topsmelt were both collected at the point where the West Oakland watershed drains pours into the PMU (Figures 5-2 and 5-3). PCBs, unfortunately, were not measured in these samples. However, the presence of these species in the PMU at the specific location of greatest interest is critically important in regard to developing a PCB monitoring strategy for this PMU. Silverside and topsmelt are important prey items for piscivorous fish and bird species throughout the Bay, such as striped bass (refxx), Forster’s Tern (*Ackerman et al. 20xx*), and Least Tern (*Elliot et al. 2007*). Based on their presence in the Crescent, they can be assumed to play a similar central role in the Crescent food web (Figure 5-1). Diet studies in the Bay margins have found that these two species have similar diets (discussed in more detail below) dominated by epibenthic invertebrates that feed on surface sediments and filter feed.

Shiner surfperch are the most important biosentinel for PCB contamination in the Bay, due to their explicit role as an indicator species for the PCB TMDL and the no-consumption advisory issued by OEHHA for surfperch in the Bay. Shiner
surferch have not been sampled in the Crescent. They have been observed to
occur, however, at a depth of 2 - 4 m in waters to the west, and would likely be
present in the subtidal portion of the Crescent (R. Fairey, pers. comm.), making them
a key species in the local food web from a PCB cycling perspective. Shiner surperch
consume mainly small benthic and epibenthic crustaceans, sometimes adding in, or
even switching to, major portions of polychaetes and clams (Jahn 2008). Like
silverside and topsmelt, shiner surperch have been shown to be excellent spatial
indicators, showing patterns that match patterns in sediment contamination.

This simple, PCB-oriented depiction of the Crescent food web (Figure 5-1)
provides a basis for considering key characteristics of potential indicator species for
bioaccumulation. Each species provides a different integration of PCB
concentrations in the food web, in abiotic compartments of the ecosystem, spatially,
and temporally.

• Species at higher trophic levels integrate contamination at the lower levels.
 For example, Mississippi silverside provide an integrated indication of
 concentrations in the various epibenthic invertebrates that they consume.
 Forster’s terns provide an even higher level of integration.

• Feeding strategies determine linkage to abiotic compartments. This is an
 important consideration for benthic species, which have feeding strategies
 that include filter-feeding, surface deposit-feeding, and subsurface deposit-
 feeding (Luthy et al. 2011). Filter- and surface deposit-feeders have a
 stronger linkage to recently exported particles from the watershed, while
 subsurface deposit-feeders are exposed to more of a mixture of particles
 exported from the watershed over the course of many years.

• Movement patterns determine spatial integration. Benthos are relatively
 stationary, and therefore indicate contamination at very small spatial scales.
 Prey fish move around the PMU (and in the case of topsmelt, probably
 beyond the PMU) and therefore integrate at a scale approaching or exceeding
 the area of the PMU. Piscivorous species generally move widely throughout
 the Bay, integrating at a regional scale.

• Lifespans and kinetics of uptake and elimination determine temporal
 integration. PCB concentrations in muscle tissue of long-lived species like
 striped bass probably represent multiple years of exposure and integration.
 Young-of-year prey fish sampled at the end of the summer represent
 exposure and integration over less than a year.

The sections below evaluate potential bioaccumulation indicator species in the
Crescent according to these key characteristics.
Mississippi Silverside

General Characteristics

Mississippi silverside (\textit{Menidia audens}) has high potential as a primary biosentinel species for monitoring changes in beneficial use impacts in response to reduced tributary inputs in the Emeryville Crescent PMU and in other PMUs where it is present. Over the last 20 years, \textit{M. audens} has been established as an important indicator of wildlife exposure to PCBs in the Bay and mercury throughout the Bay-Delta Estuary, and much has been learned about its attributes as a biosentinel species (Jahn 2008, Slotton 2008, Greenfield and Jahn 2010, Greenfield and Allen 2013, Greenfield et al. 2013a,b). This species was collected at many locations throughout the Bay as part of RMP prey fish monitoring, although least commonly in Central Bay (Figure 5-2).

\textit{M. audens}, along with topsmelt (\textit{Atherinops affinis}, discussed below), is a member of the New World silverside family Atherinopsidae. \textit{M. audens} is an invasive species that was introduced into Clear Lake and Bay Area lakes in the late 1960s, and has since spread widely across the Estuary and its watershed (Moyle 2002). \textit{M. audens} is abundant in many shallow-water areas of the Estuary (Moyle 2002, Mahardja et al. 2016) and a major component of the Estuary food web, representing an important prey species for piscivorous fish and birds. \textit{M. audens} is a pelagic species with an affinity for shallow water, generally occurring in areas that are at least seasonally freshwater (Greenfield and Jahn 2010). \textit{M. audens} is considered primarily a freshwater species, and is widely distributed in freshwater habitats across California and the US (Moyle 2002, Neilson 2016). \textit{M. audens} preys on small invertebrates, but is a generalist and opportunist, which has probably been important in its success in invading a wide variety of habitats (Cohen and Bollens 2008). The diet of \textit{M. audens} is generally considered to consist of zooplankton (copepods and cladocerans), insects, and small, pelagic invertebrates. Gut content studies on the Bay margins, however, have observed diets dominated by epibenthic invertebrates (Cohen and Bollens 2008, Greenfield and Jahn 2010). \textit{M. audens} grow to a size of 80-100 mm in their first year, and most die after spawning in their first or second summer (Moyle 2002). The fish typically collected in monitoring efforts (40-80 mm) therefore represent a contaminant exposure period of less than one year.

Advantages as a Trend Indicator in the Emeryville Crescent PMU

\textit{M. audens} possesses many characteristics that make it well-suited to be a biosentinel for changes in beneficial use impacts in response to reduced tributary inputs in the Emeryville Crescent PMU, and more broadly in other margin areas of the Bay.
• Linkage to beneficial use impairment (relevance to decision-making): Prey fish are abundant in the Bay and a major component of the Bay food web. They are important components of the diets of many Bay fish and wildlife species, and therefore have a significant role in the trophic transfer of bioaccumulative contaminants. The PCB TMDL does not include a target for prey fish. Concentrations in shiner surfperch would be the best index of impairment relative to the TMDL, but this species is only potentially present in the subtidal portion of the PMU, relatively removed from the watershed input signal. Concentrations in prey fish are the next best indicator of impairment - the linkage between prey fish and impairment is stronger than the linkage between other potential indicator species (i.e., benthos) and impairment. PCB concentrations in prey fish provide an index of exposure of piscivorous wildlife that can be compared to published risk thresholds (e.g., Greenfield and Allen [2013]).

• Strength of contamination signal: The PCB contamination signal in *M. audens* is very strong. Average concentrations of the sum of 40 congeners in the 2010 sampling were 354 ppb ww for targeted sites, and 75 ppb ww for probabilistic sites (many of which were in un-industrialized portions of the Bay). A maximum concentration of 970 ppb ww was measured in Stege Marsh. These concentrations are generally higher than the concentrations that have been measured in shiner surfperch, the most contaminated sport fish species. The strong contamination signal enhances possibilities for detecting variation in congener profiles, which can be helpful in source identification.

• Site fidelity: In general, the mobility of fish can be a significant drawback in using them as local-scale biosentinels because they often forage over a wider range than the area of interest. A general advantage of small prey fish relative to larger predator fish species is that they have smaller home ranges (Minns 1995). *M. audens*, however, has an unusually narrow home-range that makes it an excellent biosentinel for monitoring food web contamination at the mouths of creeks where freshwater enters the Bay. Although it is tolerant of higher salinity, *M. audens* has an affinity for freshwater that limits its home range in the Bay. As discussed by Greenfield and Jahn (2010), available distribution information indicates that *M. audens* forages within specific marshes, creeks, or other inshore areas. *M. audens* is almost never collected in offshore portions of San Francisco Bay or in marine salinities (Orsi 1999), but does occur within Bay margins and upstream tributaries (Leidy 2007). In contrast, topsmelt (*Atherinops affinis*), which is also abundant on the Bay margins and was the other primary species targeted in RMP prey fish sampling, become relatively unavailable to beach seines when the tide is below 2 ft MLLW, which suggests migration to deeper water (Andy Jahn, personal communication). The greater affinity of *M. audens* for marshes and tributaries may explain their elevated mercury concentrations relative to *A. affinis*. In RMP prey fish monitoring, these two species were collected at the same location and time on xx occasions, and *M. audens* had the higher mean mercury concentration in xx % of these paired
samples (Figure 5-6). One of these was at the "Ettie" station where flows from
the Ettie Street Pump Station watershed enter the Crescent. At this location the
mean concentration in M. audens in four composite samples was 0.51 ppm dw
(individual values of 0.39, 0.60, 0.64, and 0.42 ppm), while the mean for A. affinis
was 0.15 ppm dw (individual values of 0.16, 0.14, 0.15, and 0.15 ppm). Given
their affinity for freshwater, it appears likely that M. audens in the Crescent
would have high site-fidelity for the two major freshwater entry points at the
Ettie Street Pump Station/Emeryville Crescent North input and at the mouth of
Temescal Creek, and not move into the subtidal zone. Whether M. audens moves
between these two points, which are only 0.4 km apart, could be evaluated
through tagging studies.

• Temporal response: M. audens individuals that are present on the Bay margins
are primarily less than one year old. They therefore provide an independent
measure of variation in contamination from one year to the next, a desirable
attribute in the measurement of interannual trends. This is in contrast to longer-
lived biosentinels that may integrate exposure to persistent contaminants over a
longer time-span.

• Potential as a leading indicator: As mentioned above, gut content studies on the
Bay margins have observed diets dominated by epibenthic invertebrates (Cohen
and Bollens 2008, Greenfield and Jahn 2010). Gut content analysis of M. audens
collected from three margin sites in the Bay (n=10 from each site) found that the
species mainly consumed epibenthic crustaceans (specifically, corophiid
amphipods), with relatively lower abundance of insects and planktonic
crustaceans (Table 5-1) (Jahn 2008, Greenfield and Jahn 2010). Another study of
Mississippi silversides in China Camp marsh (North Bay) also found the species
to primarily consume benthic species, and less utilization of zooplankton and
insects (Visintainer et al. 2006). The epibenthic invertebrates that were
dominant in M. audens diet in Greenfield and Jahn (2010), were either surface
deposit-feeders (harpacticoid copepods and the cumacean Nipoleucon
hinumensis) or filter- and surface deposit-feeders (Corophium heteroceratum),
based on a summary of functional ecology of Bay benthos presented in Luthy et
al. (2011). Luthy et al. (2011) also reported data on benthic community
composition at several Central Bay sites, including a site off of Emeryville to the
north of the Crescent. Other epibenthic invertebrates species that they found in
moderate or greater abundance and were also mentioned by Greenfield and Jahn
(2010) included Leptochelia (another surface deposit-feeder) and Ampelisca
abdita (a filter-feeder). It thus appears that M. audens in the Crescent would be
likely to consume primarily small epibenthic invertebrates that are exposed to
PCBs via surface sediment or suspended sediment, making this species a
potential leading indicator of changes in PCB concentrations on particles that are
exported from the PMU watersheds.

• Ease of collection: Prey fish can be collected relatively easily and inexpensively
from the shore via beach seines. No boat is required.
Disadvantages as a Trend Indicator in the Emeryville Crescent PMU

- Lack of certainty about presence in the Crescent: *M. audens* was successfully sampled at the “Ettie” station in the Crescent in 2009. Although it is expected that this species has persisted (through annual repopulation from larvae settling out of the plankton) at this location, and will persist into the future, it is not a certainty.

- Limitations and information gaps on spatial integration: *M. audens* appears likely to be a valuable indicator of contamination in the Crescent, centered at the location where the inputs from the West Oakland Watershed enter the Crescent and have their greatest influence. One information gap about this species as a biosentinel in the Crescent is the degree to which individuals move between the Ettie station and the mouth of Temescal Creek. If they are moving between these areas it will be more difficult to detect a distinct trend signal from the West Oakland Watershed.

Topsmelt

General Characteristics

A. affinis has potential value as a secondary biosentinel species for monitoring changes in beneficial use impacts in response to reduced tributary inputs in PMUs where *M. audens* is present, and as a primary biosentinel in PMUs where *M. audens* is not present. RMP prey fish monitoring has established this species as a valuable indicator of wildlife exposure to PCBs and mercury in the Bay. This species was collected at many locations throughout the Bay as part of RMP prey fish monitoring (Figure 5-3), and, in contrast to *M. audens*, was collected at a large number of stations in Central Bay.

As mentioned above, *A. affinis*, along with *M. audens*, is a member of the New World silverside family Atherinopsidae. In contrast to *M. audens*, *A. affinis* is native to the Bay and is primarily a saltwater species (Moyle 2002). *A. affinis* has a weaker connection than *M. audens* to zones of freshwater input on the Bay margins. *A. affinis* is found in coastal waters, bays, and estuaries from British Columbia to the Gulf of California. *A. affinis* prefers shallow bays, sloughs, and estuaries, and is one of the most common species found in the lower reaches of coastal streams and in upper estuaries, making it an important component of the diets of piscivorous fish and birds (e.g., Least Terns on Alameda Island [Elliott et al. 2007]). Most *A. affinis* in fresh or brackish water are young-of-year or yearlings. In the Bay, they are abundant in the shallows in March-September but move in to deeper water or the ocean in winter. *A. affinis* in general are bottom-grazing or algae-browsing omnivores. A study of gut contents on the Bay margins, however, observed a diet dominated by epibenthic invertebrates, very similar to the diet for silverside.
Advantages as a Trend Indicator in the Emeryville Crescent PMU

Topsmelt possess several characteristics that makes it well-suited to be a biosentinel for changes in beneficial use impacts in response to reduced tributary inputs, but not quite as well-suited as Mississippi silverside.

- Linkage to beneficial use impairment (relevance to decision-making): Like silverside, topsmelt are a major component of the food web (e.g., Elliott et al. 2007) and provide a valuable index of exposure of piscivorous wildlife that can be compared to published risk thresholds (e.g., Greenfield and Allen [2013]).

- Strength of contamination signal: The PCB contamination signal in topsmelt is very strong, with average concentrations even higher than those for silverside. The higher averages are likely related to the greater proportion of topsmelt sites located in Central Bay. Average concentrations of the sum of 40 congeners in the 2010 sampling were 359 ppb ww for targeted sites, and 154 ppb ww for probabilistic sites. A maximum concentration of 1132 ppb ww was measured in Hunters Point South Basin.

- Site fidelity: The site fidelity of topsmelt appears to be strong enough to clearly distinguish variation among PMUs (based on the RMP PCB study), though not quite as optimal as the site fidelity for silverside. Available information suggests that topsmelt are likely to spend more of their time in subtidal waters, farther removed from the zone of maximum sediment PCB concentrations at the point of freshwater inputs in the PMU. As mentioned above, topsmelt is a saltwater species that appears to move into subtidal habitat when the tide is less than 2 ft above MLLW (Andy Jahn, personal communication), and that also moves into deeper water or to the ocean in winter. The consistently elevated mercury concentrations in silverside relative to topsmelt also suggest different habitat usage by these two species (Figure 5-6).

- Temporal response: Like Mississippi silverside, topsmelt individuals that are present on the Bay margins are primarily less than one year old. They therefore provide an independent measure of variation in contamination from one year to the next, a desirable attribute in the measurement of interannual trends.

- Potential as a leading indicator: Since the topsmelt diet appears to be very similar to the silverside diet, dominated by deposit-feeding and filter-feeding epibenthic invertebrates (Jahn 2008, Greenfield and Jahn 2010), topsmelt has similar potential as a leading indicator of changing concentrations in the PMU. One slight difference is that topsmelt are likely doing more foraging in subtidal waters away from the zone of maximum tributary influence, so they would not be quite as good of a leading indicator as silverside.

- Ease of collection: Prey fish are can be collected relatively easily and inexpensively from the shore via beach seines. No boat is required.
Disadvantages as a Trend Indicator in the Emeryville Crescent PMU

- Lack of certainty about presence in the Crescent: Topsmelt were successfully sampled at the “Ettie” station in the Crescent in 2009. Although it is expected that this species has persisted at this location, and will persist into the future, it is not a certainty. Based on RMP prey fish sampling, topsmelt appear to be more widely distributed in the Central Bay than silverside, so this may be less of a concern for topsmelt.

- Limitations and information gaps on spatial integration: Past RMP prey fish sampling suggests that topsmelt are likely to be valuable indicators of contamination in the Crescent, though less closely linked to watershed inputs than silverside due to their greater use of subtidal habitat.

Other Indicators

Shiner Surfperch

As discussed above, shiner surfperch are the most relevant indicator species in the Bay for assessing impairment of beneficial uses. This species has also proven to be a very useful biosentinel for evaluating spatial patterns and interannual trends. Repeated rounds of sampling of shiner surfperch by the RMP have demonstrated site fidelity that is strong enough to allow detection of statistically significant variation among sites in spite of a design that typically includes just three replicate composites per site.

The major drawback of shiner surfperch as an indicator species in the Crescent is a weaker linkage to the influence of tributary inputs, due to both their preference for subtidal habitat and also a diet that can include subsurface deposit-feeding polychaetes. There is also uncertainty relating to whether this species can be found in the Crescent in sufficient abundance to obtain samples. Another disadvantage is the greater effort and cost associated with trawling to collect the fish.

Overall, the status of this species as a definitive indicator of impairment makes it a valuable indicator of the status of the PMU. However, it is more suited to a role that is supplemental to silverside, which is better suited as a leading indicator of response to reduced watershed inputs.
Benthos

Monitoring of contaminant trends in benthic species in the Bay has yielded valuable information on spatial patterns and long-term trends, and linkage to changes in pollutant loads. Resident clams, in particular, have been shown to be valuable indicators, most notably *Macoma balthica* on a mudflat near Palo Alto with a trace metal time series that began in 1975 and continues to the present (Hornberger et al. 2000), and *Potamocorbula amurensis*, which has been monitored for selenium and other metals in the North Bay since 1995 (Stewart et al. 2013).

The advantages of using benthos to monitor PCBs in the Crescent would relate to potential as a leading indicator with a close linkage to tributary inputs. These advantages have been exemplified by the *Macoma* monitoring on the Palo Alto mudflat. The close linkage to tributary inputs is based on the potential to collect clams and other benthos at locations in the zone near the freshwater inputs where particles deposit and the option to focus on organisms the feed on surface sediments. *Macoma* is an example of a surface deposit feeder (though also capable of filter-feeding). Experiments by Cho et al. (2009) on the effect of addition of activated carbon to sediment at Hunters Point provided evidence of *Macoma* feeding on newly deposited sediment, resulting in an unexpected absence of effect of the activated carbon 18 months after the treatment.

There are several disadvantages, however, of *Macoma* and other benthos, relative to prey fish, as PCB biosentinels in the Crescent. One potential problem with *Macoma* is that it may not be present in the Crescent. Luthy et al. (2011) conducted benthic surveys of several Central Bay locations as part of their evaluation of Hunters Point. Very few *Macoma* were observed at any of the stations, including a transect in the margin area north of the Crescent. Other general disadvantages of benthos for trend monitoring of PCBs in the Crescent include an indirect linkage to species used in impairment assessment, lower concentrations and a weaker contamination signal, a lower degree of food web integration, and sample collection that is relatively labor-intensive.

A preliminary survey of the benthic community in the Crescent would be valuable in assessing whether the prey fish biosentinels are likely to be consuming epibenthic invertebrates as expected, and in assessing the potential of benthic species as biosentinels for long-term PCB trend monitoring. However, if the prey fish are present as expected, they would be preferred over benthos for trend monitoring.
Biota Surrogates: Passive Sampling Devices

The use of passive sampling devices to monitor sediment contamination at contaminated sites is an active area of research (e.g., Adams et al. 2007). Luthy and coworkers explored the use of these devices to assess PCB dynamics at Hunters Point (Cho et al. 2009, Luthy et al. 2011). These devices can be deployed at locations of interest to measure accumulation of dissolved phase contaminants into an adsorbent medium, such as a film of polyethylene. A single film can be used to monitor dissolved concentration profiles with depth, extending from subsurface sediment into the water column. The potential advantages of these devices in a setting like the Crescent include the ability to place them at any location of interest (with vandalism the only concern), the acquisition of site-specific and compartment-specific data, time-integration over the period required for contaminants to reach equilibrium, and high value in assessing passive bioaccumulation from the dissolved phase by benthos (including from challenging matrices like sediment pore water).

Several limitations, however, make passive samplers less useful than prey fish or sediment as spatial and interannual trend indicators in the Crescent. Impairment is related to PCB exposure at higher levels in the food web, either in sport fish for humans or prey fish for piscivorous wildlife. Exposure at these higher trophic levels is a function of both the passive accumulation and dietary uptake through ingestion of particles by benthos, followed by dietary uptake by species that consume the benthos. The linkage of the dissolved phase to impairment is therefore less direct than that of tissue concentrations in fish or even of concentrations in bulk sediment (which have been shown to correlate with concentrations in fish). The dissolved concentrations that are measured with passive samplers are also an indirect measure of the export from the watersheds, which is predominantly in the particulate phase. Finally, a disadvantage relative to prey fish is the lack of integration of the food web. Overall, passive samplers may have utility in fine-scale assessment of variation spatially and among compartments, but prey fish and sediment

c. Monitoring Recommendations

Based on the considerations discussed above, we make the following recommendations related to bioaccumulation monitoring.

Preliminary Field Studies

- Prey fish survey - Prey fish have great promise as a cost-effective indicator of interannual trends in response to changes in tributary loadings. A relatively intensive initial survey should be conducted to sample them in the Crescent. Sampling locations should include both points of tributary inflow and other shoreline locations to assess movement. PCBs should be analyzed. Gut contents
should be analyzed to provide empirical information on prey selection (and linkage to surface or subsurface sediment compartments).

- Shiner surfperch - Shiner surfperch should be collected from the subtidal portion of the Crescent. PCBs and gut contents should be analyzed.
- Benthos - The composition of the benthic community should be evaluated. This will provide information on the availability of fish prey and linkage to surface or subsurface sediment compartments. Benthic species could possibly also serve as biosentinels if the prey fish are not present.
- Surface sediment survey - A spatial mapping of PCB concentrations in surface sediments would be valuable in understanding biosentinel exposure. The sampling should measure concentrations in the top 0.5 cm (“surface” as defined by Luthy et al. [2011] - to evaluate exposure of surface deposit-feeders) and in the top 5 cm (“surface” as defined in RMP monitoring - for comparison to data for the top 0.5 cm and to other RMP sediment data from the margins and the open Bay).

Long-term Monitoring

- Prey fish - Annual monitoring of silverside at the creek mouths would appear to be an excellent indicator of interannual trends in response to changes in tributary loadings. After an initial period (perhaps 5 - 10 years) that characterizes interannual variation and the presence or absence of trend, a power analysis could be conducted to determine whether a reduced frequency would optimize use of monitoring resources.
- Shiner surfperch - After an initial survey, shiner surfperch could perhaps be done on a five-year cycle as part of RMP sport fish monitoring. More frequent monitoring could be possible, if initial data suggest it would be valuable, in coordination with shiner surfperch monitoring at the other PMUs.

References

Ackerman et al. 20xx

Hornberger et al 2000

Leidy 2007

Mahardja 2016

Orsi 1999

Stewart et al 2013

Figure 5-1. Schematic of the Emeryville Crescent food web.
Figure 5-2. Locations where Mississippi silverside were collected in RMP prey fish sampling: a) whole Bay and b) enlarged view of Central Bay.

Figure 5-3. Locations where topsmelt were collected in RMP prey fish sampling: a) whole Bay and b) enlarged view of Central Bay.
Figure 5-4. PCB concentrations (sum of 40 congeners, ng/g wet weight) measured in a) Mississippi silverside and b) topsmelt in RMP prey fish sampling.

Figure 5-5. Sediment versus prey fish PCB concentrations (sum of 40 congeners). From Greenfield and Allen (2013).
Figure 5-6. Mercury concentrations at locations where silverside and topsmelt were collected simultaneously. Line shows 1:1 slope.
Table 5-1.

Dietary summary of two fish species.

<table>
<thead>
<tr>
<th>Food category</th>
<th>Topsmelt</th>
<th>Mississippi silverside</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. %</td>
<td>Wtd. Avg. %</td>
</tr>
<tr>
<td>Diatom</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Microplanktivores<sup>a</sup></td>
<td>3.7</td>
<td>5.7</td>
</tr>
<tr>
<td>Copepods and ostracods<sup>b</sup></td>
<td>34.2</td>
<td>9.3</td>
</tr>
<tr>
<td>Large Zooplankton<sup>c</sup></td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td>Small crustacean<sup>d</sup></td>
<td>15.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Large crustacean<sup>e</sup></td>
<td>30.4</td>
<td>55.7</td>
</tr>
<tr>
<td>Insect<sup>f</sup></td>
<td>4.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Polychaete</td>
<td>5.8</td>
<td>9.0</td>
</tr>
<tr>
<td>Bivalve</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Unidentified animal</td>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

^a Foraminiferan, tintinnid, hydroid, or rotifera.
^b Planktonic and epibenthic crustaceans < 1 mm body length (BL); mainly Harpacticoid copepods.
^c Planktonic crustaceans > 1 mm BL (calanoid copepods, Cyprid larva, *Neomysis* spp., and larval *Crangon* spp.).
^d Cumaceans (*Nipoleucon hinumensis*) and copepoda (*Coullana* sp.).
^e Amphipoda (e.g., *Corophium heteroceratum*), Tanaidacea (e.g., *Panculus californiensis*), and Isopoda (e.g., *Synidotea harfordi*).
^f Hemiptera, Diptera, and Coleoptera.
6. **Answers to the Management Questions**

a. **Can we expect a decline in any compartment of the PMU in response to projected load reductions in the PMU watershed?**

A simple, one-box fate model suggests that a 15 cm mixed sediment layer would respond fairly quickly to changes in tributary inputs, with a change to a mixed layer concentration approaching a long-term steady state value (and a new mass balance of inputs and losses) in 10 years, although this rate of change to steady state is likely somewhat accelerated by the one-box assumption. These changes in the mixed layer would lead to similar changes in PCB exposure across the entire food web.

Since a significant amount of food web transfer of PCBs to species of interest occurs through benthos that are surface deposit feeders and filter feeders, some members of the food web can be expected to respond even more quickly to reductions in tributary inputs.

b. **How should tributary loads be managed to maximize PMU recovery?**

The Ettie St. PS watershed accounts for an estimated 41% of the tributary export of PCBs into the Crescent. The load estimate for the Temescal Creek watershed also accounts for 41%, and 18% is estimated to come from the Emeryville Crescent North watershed. However, per unit area of each watershed, Ettie Street PS watershed has the highest yield (19 g/km²) followed by Emeryville Crescent North (10 g/km²) and Temescal Creek (8.3 g/km²). Recovery of the Crescent from PCB contamination would be maximized by pursuing a load reduction strategy that encompasses all three of these watersheds. However, given the greater density of sources and source areas indicated by the yields, the most cost-effective phased strategy would be to focus earlier efforts in the Ettie Street PS watershed.

The vast majority of the tributary loads that are retained within the Crescent are likely delivered by storms with magnitudes less than the 1:1 year return interval. More flow is delivered by these smaller storms, and more of the input is likely to be retained. From a PMU perspective, it appears that managing and monitoring these smaller storms is more important than managing and monitoring loads from larger storms. However, given the uncertainty in the temporal distribution of the loads, further data collection would be needed to verify that this conclusion is not an artifact of limited data and the assumption that rainfall distribution is a good surrogate for temporal load distribution.

c. **How should we monitor to detect the expected reduction?**

Preliminary field studies are needed to confirm the hypotheses put forward and information gaps identified in this conceptual model report. These include:
1. A survey of the presence, distribution, and PCB burdens of biota in the Crescent;
2. A survey of the spatial pattern of PCB concentrations in surface and subsurface sediment;
3. Data on PCB loads in stormwater from Emeryville Crescent North and Temescal Creek or data on concentrations sufficient to calibrate a model used to estimate loads.

Monitoring elements recommended for tracking declines in PCB loads and impairment of the Crescent include:

1. Annual monitoring of concentrations in prey fish. After an initial period that characterizes interannual variation and the presence or absence of trend, a power analysis could be conducted to determine whether a reduced frequency would optimize use of monitoring resources.
2. Periodic monitoring of concentrations in shiner surfperch. After an initial survey, this could perhaps be done on a five-year cycle as part of RMP sport fish monitoring.
3. Tributary concentration and possibly load monitoring that is consistent with the trend monitoring strategy under development by the Sources, Pathways, and Loadings Workgroup.
4. Periodic (preferably annual) extreme near field receiving water sediment traps or surface sediment monitoring to approximately capture whole season net load concentrations. This in combination with 2a would illustrate any lags or inertial responses between loading changes and total inventory or food web effects.