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San Francisco Estuary Institute

Time Series of Suspended-Solids Concentration,
Salinity, Temperature, and Total Mercury
Concentration in San Francisco Bay During Water
Year 1998

Many physical processes affect how constituents within San Francisco Bay vary. Processes
and their associated time scales include turbulence (seconds), semidiurnal and diurnal tides
(hours), the spring-neap tidal cycle (days), freshwater flow (weeks), seasonal winds
(months), ecological and climatic changes (years), and geologic changes (thousands of years).
Continuous time series of data on basic state variables of the bay, such as suspended-solids
concentration (SSC), salinity, and water temperature, provide insight on the effect and
relative importance of physical processes on the bay. SSC time series and Regional Monitor-
ing Program (RMP) water-quality data can be used to calculate time series of some trace-
element concentrations (Schoellhamer, 1997a, 1997b). The purpose of this chapter is to
describe qualitatively time series of SSC, salinity, water temperature, and mercury during
water year 1998 (October 1997 through September 1998).

Salinity, temperature, and sediment are important components of the San Francisco
Bay estuarine system. Salinity and temperature affect the hydrodynamics (Monismith et al.,
1996; Schoellhamer and Burau, 1998), geochemistry (Kuwabara et al., 1989), and ecology
(Cloern, 1984; Nichols et al., 1986; Jassby et al., 1995) of the bay. Suspended sediments limit
light availability in the bay, which, in turn, limits primary production (Cloern, 1987; Cole
and Cloern, 1987), and thus food for higher trophic levels. Sediments deposit in ports and
shipping channels, which must be dredged to maintain navigation (U.S. Environmental
Protection Agency, 1992). Potentially toxic substances, such as metals and pesticides, adsorb
to sediment particles (Kuwabara et al., 1989; Domagalski and Kuivila, 1993; Flegal et al.,
1996; Schoellhamer, 1997a, 1997b).

The transport and fate of suspended sediments are important factors in determining
the transport and fate of constituents adsorbed on the sediments. For example, the concen-
tration of suspended particulate chromium in the bay appears to be controlled primarily by
sediment resuspension (Abu-Saba and Flegal, 1995). Concentrations of dissolved trace
elements are greater in South Bay than elsewhere in San Francisco Bay, and bottom sedi-
ments are believed to be a significant source (Flegal et al., 1991). The sediments on the bay
bottom provide habitat for benthic communities that can ingest these substances and
introduce them into the food web (Luoma et al., 1985; Brown and Luoma, 1995, Luoma
1996). Bottom sediments also are a reservoir of nutrients that contribute to the maintenance
of estuarine productivity (Hammond et al., 1985).

Time Series Data
The U.S. Geological Survey (USGS) operates several salinity, temperature, and SSC moni-
toring sites in San Francisco Bay (fig. 1) (Buchanan 1999; Buchanan and Schoellhamer,
1999). At most sites, specific conductance, temperature, and/or optical backscatterance
(OBS) sensors are positioned at mid-depth and near the bottom. A measurement is taken
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every 15 minutes by a data recorder by averaging the output of each sensor for 1 minute.
Specific conductance was converted to salinity using the 1985 UNESCO standard
(UNESCO, 1985) in the range of 2-42. Salinities below 2 were computed using the exten-
sion proposed by Hill et al. (1986). The OBS sensors optically measure the amount of sus-
pended material in the water, and the output of the sensors is converted to SSC with cali-
bration curves developed from analysis of water samples. The sites are serviced every 1 to 5
weeks to clean the sensors, which are susceptible to biological fouling, and to collect water
samples for sensor calibration. Biological growth fouls the sensors and invalidates sensor
output. Equipment malfunctions and temporary shutdown of some sites due to seismic
retrofit of bridges also were responsible for some lost data.

This summary includes time series data on some processes that affect salinity and SSC.
Estimates of discharge from the Sacramento-San Joaquin River Delta were obtained from
the California Department of Water Resources (1986). Tidal currents are strongest during
full and new moons, called spring tides, and weakest during half moons, called neap tides.
The strength of the spring-neap cycle was quantified by calculating the low-pass root-
mean-squared (RMS) water level by squaring water level measured at Point San Pablo,
low-pass filtering, and taking the square root (Schoellhamer, 1996). Salinity data, calculated
from the temperature record and the electric conductivity record, at Mallard Island and the
reservoir release data were obtained from the Department of Water Resources “California
Data Exchange Center” (http:// cdec.water.ca.gov). Chlorophyll a data were obtained from
the water quality cruises by USGS RV Polaris through the Access USGS website at http://
sfbay.water.usgs.gov.

Salinity
Salinity decreased throughout the bay during the winter wet season. The largest freshwater
discharges from the Central Valley into San Francisco Bay and the lowest near-surface
salinity at Point San Pablo for the water year occurred during February (fig. 2). Near-
surface salinity at Point San Pablo frequently approached zero during ebb tides in Febru-
ary. In South Bay at the San Mateo Bridge, minimum salinities occurred during February
and March. This delay in response in South Bay was because of the longer time required
for mixing of oceanic water and freshwater in South Bay than in Central Bay. During
summer and autumn, salinity was relatively high and gradually increased at both sites
because freshwater discharge was relatively low.

Tidal variations of salinity, as indicated by the range of salinity on a given day, were
much greater at Point San Pablo than at the San Mateo Bridge (fig. 2). Point San Pablo is
closer to the Sacramento River, the primary source of freshwater to the bay, and to the
Pacific Ocean, the source of saltwater. Tidal currents also are greater at Point San Pablo
than at the San Mateo Bridge. Thus, the change in salinity over a tidal cycle at Point San
Pablo is greater than at the San Mateo Bridge.

Compared to mean monthly values for water years 1994-1997, which are shown as
shaded lines in figure 2, freshwater discharge from the Central Valley was greater and
salinity was less in February-September 1998.
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The spring-neap cycle had a small effect on salinity at Point San Pablo during the
spring and summer. After the discharge peak in February, the envelope of tidal cycle salin-
ity variations, which appears as a thick black band on figure 2, oscillated with a 14-day
period. Peaks in the envelope occurred during spring tides and valleys in the envelope
occurred during neap tides. Energetic spring tides pushed high salinity water farther up
into the estuary, and weak neap tides allowed low salinity water to move down into the
estuary.

Vertical salinity differences that stratify the water column result when denser, more
saline water lies below lighter, fresher water. At Point San Pablo, the water column was
frequently stratified after January due to the relatively large freshwater discharge.
Throughout the water year, the greatest stratification occurred during neap tides, which
were too weak to vertically mix the water column. Stratification was smaller during spring
tides, which vertically mixed the water column. Because South Bay had less freshwater
inflow, there was less stratification than in other parts of San Francisco Bay. Stratification
was observed at the San Mateo Bridge only during neap tides January-April (fig. 3). The
annual phytoplankton bloom in South Bay occurs during periods of salinity stratification
(Cloern, 1984). In 1998, the phytoplankton bloom began in early March during a period of
significant stratification and peaked in mid-March (http:// sfbay.water.usgs.gov).
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Figure 2. Time series of delta discharge (California Department of Water Resources, 1986) and near surface
salinity at Point San Pablo (PSP) and the San Mateo Bridge (SMB), water year 1998. The shaded line indicates the
mean monthly values for water years 1994-1997.
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Temperature
Time series of water temperature had a strong seasonality. Maximum temperatures oc-
curred during summer and minimum temperatures during winter at both Point San Pablo
and the San Mateo Bridge (fig. 4). Temperatures during water year 1998 were similar to the
monthly mean temperatures during water years 1994-1997. Tidal cycle variations in tem-
perature were usually greatest at Point San Pablo because there is more exchange with the
cooler Pacific Ocean. During winter, however, the differences in temperature over a tidal
cycle at the two sites were small because water temperatures in the bay and the ocean were
more uniform. Instruments at both sites are located in deep channels adjacent to shallow
waters, which are conducive to warming during the summer.

Suspended-Solids Concentration
SSC in the northern part of San Francisco Bay varied in response to freshwater discharge
from the Central Valley during water year 1998. In early December 1997, delta discharge
peaked at 28,400 ft3/s during the first large runoff event of the wet season (fig. 5). In re-
sponse, SSC at Mallard Island, the boundary between the bay and the delta, increased to
more than 100 mg/L (fig. 5). This “first-flush” of the Central Valley watershed lasted about
4 weeks. Maximum delta discharge and SSC for the water year coincided in February.
During water year 1997 maximum delta discharge and SSC also coincided (Ruhl and
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Figure 3. Time series of salinity stratification (bottom salinity minus near-surface salinity at Point San Pablo (PSP)
and San Mateo Bridge (SMB), water year 1998.
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Schoellhamer, 1999) but during water year 1996 SSC was greatest during the first flush
(Schoellhamer, 1997b). It is important to note that due to these “first flush” effects the
highest concentrations of suspended sediments at Mallard Island do not always coincide
with the peak delta discharge.

Delta discharge had a smaller effect on SSC farther seaward in the bay and the tidal
variation of SSC, especially the spring-neap tidal cycle, was more important. At Point San
Pablo, SSC was greatest during a spring tide in late February following high Delta dis-
charge (fig. 6). In February and March, SSC was greater than the monthly means for water
years 1994- 1997. Throughout the water year, SSC varied with the spring-neap cycle at
Point San Pablo, with greater SSC during spring tides and smaller SSC during neap tides.
Previous analyses indicate that about one-half the variance in SSC is caused by the spring-
neap cycle and that SSC lags the spring-neap cycle by about 2 days (Schoellhamer, 1996).

From March through mid-July 1998 SSC was generally low at Mallard Island, with
low tidal variations as well. Similar low SSC values during previous years have been attrib-
uted to spring-time reservoir flow when clear water released upstream keeps concentrations
at Mallard Island low (Schoellhamer, 1997b). However, the reservoir release records from
Oroville, Shasta, Folsom, Englebright, Don Pedro, Friant, New Exchequer, New Melones,
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Figure 4. Time series of near-surface water temperature at Point San Pablo (PSP) and the San Mateo Bridge
(SMB), water year 1998.
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Figure 5. Time series of delta discharge (California Department of Water Resources, 1986) and releases from the
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and Comanche reservoirs (http://cdec.water.ca.gov) indicate that there is no major shift in
reservoir operation that could account for low SSC at Mallard Island (fig. 5). During March
and April, reservoir releases account for about one-half of Delta discharge. By July, reser-
voir release is greater than Delta discharge due to water diversions, but SSC and its tidal
variability remain low. Therefore, reservoir releases appears to be an overly simplistic
explanation. Other possible explanations are that bank storage, base flow, or water im-
pounded on neighboring lands such as agricultural fields are contributing significant
amounts of clear water to the riverine system which is not being captured through the
reservoir release measurements alone.

In mid-July both the absolute concentration and the variability of suspended-solids
measurements at Mallard Island begin to increase again. These changes are coincident with
the return of salinity to the area (fig. 5). There is no definitive answer to explain this phe-
nomenon. Some potential explanations are a sufficient decrease in delta outflow to allow
transport of more turbid water in Suisun Bay to Mallard Island during flood tide,
resuspension in the neighboring shallows of Honker Bay, or the onset of density current
pulses (Tobin et al., 1995).
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In previous years, a seasonal SSC signal caused by greater wind and sediment
resuspension during spring has been observed (Schoellhamer, 1996, 1997b; Ruhl and
Schoellhamer 1999). Such a seasonal signal is not immediately apparent in these data,
perhaps due to missing data or the large freshwater discharge. Wind speed during water
year 1999 was similar to previous years (data not shown).

South Bay Phytoplankton Bloom and SSC
A predictable spring phytoplankton bloom occurs in SoutløSan Francisco Bay following
periods of strong vertical salinity stratification in the water column (Cloern, 1996). Salinity
stratification usually occurs during neap tides when vertical tidal mixing is weak. Stratifi-
cation promotes phytoplankton blooms because the phytoplankton are effectively trapped
near the surface where photosynthesis takes place and are separated from benthic grazers
in the bed sediments (see Cloern, 1996).

During water year 1998 there were several periods of strong stratification in South Bay
in January and February; however during the stratification events in March the chlorophyll
a concentrations increase dramatically, indicating that biological primary production is
increasing and the phytoplankton bloom is occurring (fig. 7). The data reported here for the
San Mateo Bridge are the average of the data reported from two RV Polaris stations adja-
cent to the bridge (San Francisco Airport and Redwood Creek). The northern extent of the
phytoplankton bloom is near the San Mateo Bridge and the chlorophyll a response seen at
the Dumbarton Bridge is three to four times greater than that seen at the San Mateo Bridge
during the bloom period (fig. 7).

The first spring tide following the peak of the phytoplankton bloom there is a dramatic
increase in SSC, where, in some cases, the highest concentrations of the year are seen. The
response at San Mateo Bridge shows a moderate increase in the SSC with peaks in late-
March and early-April (fig. 7). The SSC at the Dumbarton Bridge, however, is almost twice
as large following the spring phytoplankton bloom as at any other time of year (fig.7). The
reason for this response in the SSC time series data is still unclear. One possible explanation
is that the bloom biomass scavenges suspended-sediment particles. The biomass and scav-
enged particles deposit on the bed during a neap tide (~ March 20) and are resuspended
during the spring tide at the end of March, greatly increasing SSC.

Total Mercury Concentration
In the 1995 RMP annual report, RMP data from 1993 and 1994 were used to show that
total concentrations of seven trace elements were well correlated with SSC (Schoellhamer,
1997a). In the 1996 RMP annual report, RMP mercury and SSC data from 1995 were
added to the 1993 and 1994 data to update a linear regression equation between mercury
and SSC (Schoellhamer, 1997b, figure 52).

These linear correlation results and SSC time series can be used to estimate time series
of total mercury concentration. Example time series for SSC and mercury at mid-depth at
Point San Pablo are shown in figure 8. The strong correlation between total mercury con-
centration and SSC indicates that the physical processes that affect SSC also affect total
mercury concentration. These processes include semidiurnal and diurnal tides, the spring-



12

Time Series of Suspended-Solids

0

2

4

6

8

SA
L

IN
IT

Y
 S

T
R

AT
IF

IC
AT

IO
N

0

50

100

150

200

250

300

C
H

L
O

R
O

PH
Y

L
L

 A
C

O
N

C
E

N
C

T
R

AT
IO

N
, I

N
M

IL
L

IG
R

A
M

S 
PE

R
 C

U
B

IC
 M

E
T

E
R

DMB
SMB

0

100

200

300

400

SU
SP

E
N

D
E

D
-S

O
L

ID
S

C
O

N
C

E
N

T
R

AT
IO

N
, I

N
M

IL
L

IG
R

A
M

S 
PE

R
 L

IT
E

R

0

200

400

600

800

1,000

1,200

OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT

1997 1998

SMB

DMB

SMB
SU

SP
E

N
D

E
D

-S
O

L
ID

S
C

O
N

C
E

N
T

R
AT

IO
N

, I
N

M
IL

L
IG

R
A

M
S 

PE
R

 L
IT

E
R
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neap tidal cycle, freshwater discharge, and seasonal winds. As with SSC, about one-half the
variance of total mercury concentration is the result of the spring-neap cycle.

The time series of total mercury concentration can be used to calculate the 4-day
average concentration. The water-quality objective currently in effect for mercury in the
San Francisco Bay Estuary is a 4-day average total concentration of less than 25 ng/L (San
Francisco Bay Regional Water Quality Control Board, 1995). Discrete water samples
provide an instantaneous value for total mercury concentration, not a 4-day average. Time
series from a fixed point can provide a Eulerian estimate of the 4-day average concentra-
tion. Individual parcels of water may experience a different 4-day average concentration
because they are moving within the estuary (a Lagrangian reference frame) and are not
static at a fixed point. The 4-day centered running median of total mercury concentration at
mid-depth at Point San Pablo is shown in figure 9.

The 4-day averaging window removes the influence of diurnal and semidiurnal tides,
primarily leaving a signal from the spring-neap cycle and, for relatively wet water years
such as 1998, a freshwater discharge signal. Thus, for the present geochemical condition of
the estuary, the spring-neap cycle and freshwater discharge are the primary factors that
determine whether the water-quality objective is satisfied at any given time.
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concentration (calculated) at Point San Pablo, water year 1998.
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Conclusions
Time series data collected during water year 1998 reveal the influence of physical and
biological processes that are typically observed in San Francisco Bay. Freshwater discharge
from the Central Valley during the winter and spring, the spring-neap tidal cycle, annual
primary production cycles, and diurnal and semidiurnal tides affected salinity, temperature,
suspended- solids concentration, and total mercury concentration. Calculated time series of
total mercury concentration, and other time series of trace-element concentrations that are
linearly correlated with SSC, can be used to evaluate water-quality objectives that are
based on averaging periods much longer than the time required to sample.
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