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INTRODUCTION

Trace substance measurements have been made in the waters of San Francisco Bay by various
groups now working under the auspices of the Regional Monitoring Program for Trace
Substances (RMP), funded through the San Francisco Bay Regional Water Quality Control Board
(SFBRWQCB) and under the management of SFEI. The water column data include near-surface
measurements up to 3 times yearly since 1989 at up to 27 stations throughout the Bay and
nearby portions of tributary rivers. Numerous trace elements and trace organics were measured,
in addition to relevant environmental characteristics such as salinity and total suspended solids

(TSS).

The purpose of this project is to suggest ways in which these data can be analyzed to describe
spatial patterns and temporal trends. Four specific questions were used to guide and organize the
data exploration:

1. How do we determine spatial boundaries within which the data can be summarized
and between which comparisons should be made?

How can differences in space be detected?

How can significant relationships between trace substance concentrations and
environmental characteristics be determined?

4. How can differences in time be detected?

Guided by these questions, we arrive at a set of recommendations for analyzing RMP data with
an underlying goal of facilitating the upcoming five-year review of the data and program. Due to
the size of the data set, the complexity of the issues, and the limited time available, we have not
attempted to apply any of these techniques exhaustively to the data set for definitive answers.
This is the task of the five-year review. We do, however, offer a specific example of each
recommended approach.

We used water column total trace element data collected and provided by Russ Flegal and his
group at the University of California, Santa Cruz. Although based on the trace element data, our
recommendations should be applicable to other trace contaminants as well. The complete list of
stations and sampling events (through mid 1995) are listed in Table 1 and Table 2, respectively.
The RMP data collection effort officially began in 1993, so the earlier sites and years belong to a
“pilot” program. In our analysis, we focus on the stations that have become part of the RMP
program itself (Figure 1) and the sampling events that include these particular stations (events
6-15).

Unless otherwise stated, we used S-Plus (Statistical Sciences, 1995) to conduct the analyses and
produce plots.

This project was supported by the San Francisco Estuary Institute (Project No. SFEI-135-95).

SPATIAL STRATIFICATION

Horizontal stratification of an estuary can be motivated by many different goals: (1) In the
context of optimizing sampling design, stratified sampling refers to dividing a relatively
heterogeneous estuary into more homogeneous subdomains and then carrying out either a
random or systematic program of sampling independently within each subdomain (stratum).
Insofar as the within-subdomain variability is reduced relative to the between-subdomain
variability, stratification can lead to a more precise estimate of the mean than either simple
random or systematic sampling (Cochran, 1977). The strong spatial correlation characteristic of
estuaries (Powell et al., 1986) suggests that stratification of sampling into spatially contiguous
sub-regions might be appropriate. Stratification may be motivated, however, by other
considerations as well. (2) Administrative convenience can be a valid reason when, for example,
different sampling methods are required for different habitats of an estuary (e.g., shoals vs.
channels). (3) Stratification may also proceed along political boundaries such as those between
counties or states, particularly when the issue is one of compliance with government regulations.



(4) Division into subdomains can also be motivated by the need to understand underlying causal
mechanisms, in which case one might want to stratify on the basis of covariability of different
spatial locations in time.

Goal (1) is a relevant issue for the RMP, particularly in the context of trend detection. In order to
study the efficacy of estuarine stratification in the context of this first goal, one must have a
method for effecting a stratification and the data for evaluating it. Several methods are available.

Tree-based modeling or regression, which operates by successively splitting a dataset into
increasingly homogeneous subsets or strata until some stopping rule comes into effect, is one of
many approaches to the problem of grouping objects (in this case locations) into subgroups
according to their similarity (Clark and Pregibon, 1992). Several features of tree-based
regression attracted us originally. First, the criterion used for splitting a subdomain supports the
goal of stratification for statistical estimation, namely decreasing the within-subdomain variance.
Second, by operating through a binary recursive partitioning, it automatically preserves spatial
contiguity within subdomains. Third, it can be applied to two- and higher-dimensional data.

Attempts to apply tree-based regression to datasets similar in size to the RMP dataset, however,
have convinced us that more spatial locations are necessary for use of the technique. Under the
auspices of this project, we have applied the technique to the USGS MIDAS datasets, which
consist of approximately 5,000 data records per transect between Coyote Creek and Rio Vista.
The details are described in a separate manuscript (Jassby et al., 1996).

Another approach is through some kind of cluster analysis that can classify stations into
subgroups that are similar within-groups but disparate between-groups. A number of clustering
algorithms are available, differing in measures of similarity, in optimization criterion, and in
search method. We examined an approach called model-based clustering, which is based on the
assumption that the data are generated by a mixture of underlying probability distributions.
Different clustering criteria can be chosen, depending on the assumed distribution of the cluster
members (spherical or ellipsoidal) and whether the size of the clusters in the spherical case, and
orientation, size and shape in the ellipsoidal case, is the same or not for all clusters. One of the
advantages of model-based clustering is the availability of a supplementary technique for
choosing the number of significant clusters using Bayesian analysis. A statistic known as the
approximate weight of evidence for k clusters (AWE, ) is calculated for each k; the value of k that
maximizes AWE, is the number of clusters for which there is the most evidence. If all the AWE,
are negative, there is no evidence for any clustering. Given the “approximate” nature of this
statistic, it functions best as a guide to the number of clusters rather than a dependable
specification of that number.

We examined the behavior of model-based clustering using two separate clustering criteria. The
first clustering criterion, which we refer to as SPHER (for “spherical”), assumes spherical
clusters of different sizes determined by the data (Banfield and Raftery, 1992). The second
criterion, which we refer to as UNCON (for “unconstrained”), assumes ellipsoidal clusters with
different orientations, sizes, and exact shapes determined by the data (Scott and Symons, 1971).
These two criterion are therefore near the opposite ends of the spectrum in terms of pre-specifying
the nature of the clusters.

We applied each criterion to the trace element data set in two different ways:

1. In the first way, we attempted to cluster stations for each sampling event. For each
event, we removed from the data matrix (stations x elements) any trace element for
which one or more data points were missing. Data for each element were scaled by the
maximum value of that element in that sampling event.

2. In the second way, we tried to cluster stations for each trace element, but all sampling
events. For each element, we removed from the data matrix (stations x events) any
event for which one or more data points were missing. Data for each event were scaled
by the maximum value of that event for that element.

We used the “total” trace element data for sampling events 7-15, i.e., April 1992—-April 1995
(Table 2). The combinations of events and trace elements available during this period are
summarized in Table 3.



The results are summarized in Figure 2 and Figure 3. Three features stand out:

1. The results were often dependent on the exact model, i.e., whether the SPHER or
UNCON criterion was used. This was true whether clusters were determined for
single events (e.g., Figure 2, event 7) or single elements (e.g., Figure 3, Cr).

2. The AWE, statistic indicates significant clustering in very few cases (Figure 2, events
10, 12 and 13; and Figure 3, Cr, Fe, Hg, Ni, Pb). In all of these cases, but Fe, the
AWE, statistic suggested only two significant clusters. In the case of Fe, the multiple
clusters were based on a single event (event 7); Fe data were unavailable for
subsequent events. Furthermore, significant clustering was implied only with the
UNCON criterion.

3. The clusters are dependent on the sampling event and on the specific trace element.
Even comparing only the analyses where two significant clusters were detected shows
little constancy of clustering. BA40 and BC20, for example, occur in the same cluster
for event 12 but different clusters for event 10 (Figure 2). Similarly, BA40 occurs
separately from BA20 and BA30 in the case of Cr, but together with them in the case
of Ni (Figure 3). Some of the trace element clusters are similar (compare Hg and Ni, or
Cr and Zn), but these appear to be the exception rather than the rule.

These results effectively point out the shortcomings of cluster analysis and its inappropriateness
for choosing strata with this particular data set. Clustering algorithms will always result in
clusters of some sort and, given the complexity of most ecological phenomena, especially in
estuaries, rationalization of the results is usually easy to accomplish. The three features pointed
out here, however, each correspond to a problem that should make us proceed with caution.

First and foremost, we need to decide beforehand what algorithm should be used, which in turn
depends on how we plan to use the clusters. In the case of stratifying to decrease the variance of
the global mean, however, it is not clear which of the available models is most appropriate. The
unconstrained method has the advantage of fewest assumptions among model-based techniques,
and it alone produced significant clustering in the analyses presented here, but it does not cluster
with the same criteria as that required for optimizing precision of the mean through stratified
sampling. We are thus left without an objective way to choose a model.

Second, even if we knew which model to use, the behavior of the AWE, statistic suggests that the
data set is too small. The clusters that are determined are probably spurious in large manner,
with no more status than the clusters we could obtain with a random data set. This problem will
not go away unless the number of sampling stations per event increases substantially.

Thirdly, even if we have confidence in a particular model and have a sufficient number of stations,
clusters are simply too evanescent in time to be dependable groupings. Moreover, clusters for one
trace element do not necessarily correspond to those for another. This dependence on time and
variable was clearly observed in our study of the MIDAS water quality data, which focused on
salinity, suspended particulate matter (SPM) and chlorophyll a (Jassby et al., 1996).

A further problem with clustering algorithms, which can be observed by inspection of the data, is
the lack of respect for spatial contiguity. One would expect that components of an ecosystem that
are closer in space are more likely to be under the same generating processes (Legendre, 1987).
This expectation legitimizes an approach in which clusters are valid only when composed of
spatially contiguous stations. Clusters containing noncontiguous stations are often just artifacts.
There are ways to modify the conventional clustering algorithms to respect spatial contiguity,
(Oliver and Webster, 1991) but this is yet another reason why conventional algorithms should be
viewed with caution.

For all of these reasons, we recommend against the use of conventional cluster analysis as a final
determinant of estuarine stratification with respect to the trace element data. There is no harm in
using the method as an exploratory technique, but one should be advised that the data are
probably too few to make it worthwhile.

Are there any alternatives? Although tree-based regression and other techniques are inherently
spatially-constrained and also are based on criteria more in keeping with the requirements of an



effective stratification, there is no way to avoid the two other basic problems: not enough data
and an estuary constantly in flux.

It is useful to remember that a stratification does not need to be optimal in any sense to be
effective. In the case of the MIDAS data, for example, we combined all the tree-based regression
results for all variables and cruises and used that as a guide to effecting a compromise
stratification (Table 4). This stratification scheme turned out to be very effective in reducing the
variability of estimates of the global mean, compared with simple random sampling. In principle,
then, we can test any scheme for efficacy on an existing data set.

A fundamental problem with the RMP data set, however, is that the sampling design is not
probability-based and there is no proper way to calculate global estuarine properties and their
variance. The efficacy of any stratification for reducing variance is a moot point. The desirability
of such global estimates needs to be considered.

If global estimates are desired, the stations should be laid out so that proper estimates can be
made of global properties such as subembayment means. Given the experience in other systems
with significant spatial autocorrelation, a systematic (regular) grid of stations is to be preferred
over a random one. This “primary” set of stations should be supplemented with a “secondary” set
located nearshore by effluents suspected to be important sources of one or more contaminants.
The purpose of the primary set is to establish regional status and trends. The purpose of the
secondary set is to provide important supplemental local information that could bear on
causality.

The number of primary stations needs to be determined on the basis of a model for the design and
the desired performance in terms of trend detection. An important requirement for this
determination is inclusion of the spatial correlation structure. The primary grid of stations
remains fixed through time, although the exact subset of these stations sampled each year may
cycle in some way.

Secondary stations, on the other hand, are determined by an understanding of possible sources.
The secondary set may change from year to year in a flexible way depending on the accumulated
data and changes in activities within the watershed.

REGIONAL DIFFERENCES
Choosing Subregions for Comparison

Although there may be no “self-selecting” subregions for improving estimates of statistics like the
global mean, many other reasons exist for selecting spatially contiguous groups of stations and
comparing their means (see above). One particularly important reason is to establish the location
of sources. If one region has higher trace element concentrations than another, the first is more
likely a more important source or closer to the actual source. In this section, we explore how to do
this comparison. Before doing so, however, we need to choose subregions of the Estuary with
which to make the comparisons. We could do this arbitrarily, of course, but this seems like a good
place to explore what subregions might be most useful to the RMP. In order to guide the
discussion, we have mapped all the total trace element data in the RMP program (Figure 4).
Concentrations are proportional to the areas of the squares, with the largest square being the
same size in each map. As a result, square sizes can be compared only within individual maps. If
the scale were the same for all maps for a given element, then many squares would be too small
to distinguish among their sizes.

The maps each show two horizontal dashed lines. The dashed line at 4,160 km separates out all
stations south of the San Bruno Shoal. The dashed line at 4,200 km separates out all stations in
North Bay (San Pablo and Suisun Bays). Because the San Bruno Shoal is an important
hydrological boundary (Powell et al., 1986), it is arguably a better boundary for the South Bay
than the more traditional Bay Bridge location. These boundaries, then, can be said to divide the
Bay into South, Central, and North Bays. We do not want to make an argument that these
boundaries are optimal in any way, only to point out that they have hydrological, physiographic,
and historical significance.



In fact, these boundaries appear to have utility in describing trace element concentrations. In the
case of silver, chromium, copper, mercury, nickel, lead, and zinc, a sharp demarcation often
occurs in concentrations between the central and northern stations. For these same elements,
values below the San Bruno Shoal are clearly higher than for the central stations during many
RMP sampling events.

In the latter case, however, rather than a clear step in levels between embayments, we see rather
a more gradual tapering off of concentrations from the south to north. As a result, the exact
placement of a boundary between the southern and central stations is not well-defined and an
argument could be made to move it at least one station south in many instances. The argument is
particularly strong for the April 1995 data, as an example. We have kept the boundary just
south of the San Bruno Shoal because of its hydrological significance and because a single best
demarcation line does not exist, but a line further to the south would be equally acceptable and
might give clearer differences at times between subregions means.

The easternmost of the northern stations, particularly the river stations and Honker Bay, often
have lower concentrations as a group than the rest of the northern stations, suggesting an
additional boundary at, or east, of Martinez. Such a boundary could be useful for refining
hypotheses about sources to the northern stations, although the power of such tests is in danger
of being too small because of the smaller number of stations.

Note how the boundaries suggested by the trace element data compare to those for the MIDAS
data (Table 4). Because of the density of the MIDAS data, more boundaries can be identified. The
only real discrepancy between the two sets occurs with the central stations. The MIDAS data
suggest a boundary at Angel Island, while the trace element data suggest one at Point San
Pablo. Otherwise, combining regions 1 and 2, and also regions 4 and 5, for the MIDAS data
yields subregions similar to those suggested for the trace elements. No doubt the differences have
to do with the effects of strong localized sources for some of the trace elements.

Incorporating Spatial Correlation into Analyses

Now we move on to the question of determining differences among these subregions. For
independent samples, one can compare the means of groups by means of a conventional analysis
of variance (ANOVA). For spatial data, however, the samples are not necessarily independent. In
particular, because of the mixing processes in any water body, neighboring values tend to
resemble one another and so the spatial changes are quite smooth compared to a random sample.
Most classical statistics are not robust to the presence of positive spatial autocorrelation, i.e., the
tendency for neighboring samples to be more similar than random samples. If spatial
autocorrelation is not taken into account, models may end up being specified incorrectly,
parameter estimates may be biased and inferences may be incorrect. Spatial autocorrelation is a
potential problem in analyzing estuarine data, whether the issue is ANOVA, correlation,
regression, or many other techniques (Griffith, 1987). For many of the RMP data, differences
among subregions are obvious from a visual inspection and it may seem wasteful to go through
the following calculations. Nonetheless, not all differences are conclusive from a visual inspection
and in any case an “objective” approach is required to confirm subregion differences that might
have important consequences in terms of pollution abatement.

In order to address spatial autocorrelation in data analysis, one must either show that it is not a
problem or account for it. Spatial effects can enter in many forms, however, so in either case one
must make some assumptions about the form, i.e., postulate some specific underlying statistical

model. We chose to focus on a model called the spatial lag model (Anselin et al., 1993):

y=pWy+XB+e,

where y is a N by 1 vector of observations on a trace element (N is the number of
stations), X is a N by k matrix of observations on k explanatory variables at the
N stations, B is a k by 1 vector of regression coefficients, and € is a N by 1 vector
of error terms. The difference between this and the ordinary-least-squares (OLS)
regression model is the presence of the term pWy, where W is a N by N matrix of
spatial weights expressing the influence of all stations on each individual station
and p is a coefficient.



This model is interesting because of its consistency with the advection-diffusion equations
describing the movement of water and associated substances. The advection-diffusion equation
when discretized results in a second-order autoregressive equation that is essentially a special
case of equation 1.

An alternative model, the spatial error model, is similar to OLS:

y=XB+e, (2

but the error terms are now correlated at neighboring locations. The spatial dependence of the
error term can be formulated in two ways, as a spatial autoregressive error model:

e=AMe+u, (3
or as a spatial moving average error model:
e=Au+u, @

where A is the autoregressive parameter and the u are independent and
identically-distributed error terms.

There are various ways to express how stations influence each other through the spatial weights
matrix W. We have used the “gravity” model in which the influence is proportional to the inverse
square of the distance separating the stations. Another more complicated spatial weights matrix
may be more suitable for estuarine conditions. The influence due to tidal mixing, for example,
probably falls off rapidly beyond 5-10 km, whereas advective influences may extend over the
spatial scale of the Estuary. Moreover, both of these influences are anisotropic. The southern Bay
may require a different spatial weights matrix than the northern Bay because of their different
hydrodynamic regimes. Other forms for the spatial weights matrix therefore need to be carefully
devised and examined. For our purposes of demonstrating the method, we will assume that this
model is sufficient. Otherwise, the number of analyses to be done quickly spins out of control.

Spatial ANOVA can be treated as a special case of both equations 1 and 2 through the use of
dummy variables. An indicator value is defined for each subregion, taking on the value of 1 for
stations in that subregion and 0 otherwise.

Several tests are available for determining whether an ordinary-least-squares (OLS) regression
is sufficient or whether spatial effects need to be incorporated. These tests can also indicate
whether the spatial lag model is an appropriate alternative or whether some other formulation of
the spatial effect should be used. We used a battery of so-called Lagrange Multiplier (LM) tests
(Anselin, 1988; Anselin et al., 1996): LM,,, tests for the presence of a spatially-lagged dependent
variable, i.e., for the appropriateness of equation 1; LM,,, tests for the presence of spatial error
dependence, i.e., for the appropriateness of equations 2 and 3 or 4; and LM,,,,, tests for the
presence of a higher-order model involving both a spatial lag and a moving average error
process. We also used robust versions of LM,,, and LM,,, that are less likely to be distorted by
spatial error and spatial lag dependence, respectively.

err

We used Maximum Likelihood estimation to solve these models. The algorithms were developed
by Luc Anselin, formerly at the National Center for Geographic Information and Analysis at UC
Santa Barbara and now at the Regional Research Institute of West Virginia University. The core
algorithms are available free of charge and have been translated into several high-level
languages (including GAUSS and S-PLUS; Anselin et al., 1993). They are also part of a more
comprehensive commercial package called SpaceStat. Both the core algorithms (S-PLUS version)
and SpaceStat were used in our analyses.

One caveat regarding the detection of spatial differences is related to the large number of
potential tests with the RMP data. For example, if we wanted to test the differences between all
pairs of three subregions for each of 10 elements, both total and dissolved, for the eight sampling
events of Figure 4, we would have to conduct 480 tests. If we used a significance level of 0.05 for
these tests, then we would detect 0.05 x 480 = 24 differences by chance even if all the data were
random. Depending on the reason for conducting the tests, one might want to be protected
against falsely rejecting the null hypothesis of no difference by a more demanding significance
level. For example, when comparing the three pairs of subregions for each trace element and



sampling event, we might want to use 0.05/3 = 0.017 as a level of significance (the “Bonferroni”
correction).

Another way that affords some protection is to first test for the presence of any subregion
differences though ANOVA and then proceed to pairwise comparisons only if differences are
indicated. In accordance with this approach, we first show some examples of ANOVA results
using all three subregions, then proceed to the pairwise differences. We do, however, investigate
all pairwise differences regardless of the overall ANOVA result.

Examples Using the RMP Trace Element Data
All Subregions

As an example, we applied this form of analysis to the total trace element data for 1994 and the
three subregions illustrated in Figure 4. A number of separate analyses are required to arrive at
the final conclusion. The Lagrange Multiplier tests are based on OLS estimation of the standard
regression model. The first step is therefore to estimate the OLS model and examine the
diagnostics, including the error distribution. Sample diagnostic results are shown in Table 5. A
non-normal error distribution may distort subsequent tests for heteroskedasticity and spatial
dependence. SpaceStat uses the Kiefer-Salmon statistic to test for normality, an asymptotic test
that may not be reliable for small data sets. We found non-normality in 22 out of the 30 cases
(Table 6).

If the errors are not normal, a log transform of the dependent variable can often make them so.
For these data, only a single non-normal error distribution remained after the log transform:
January arsenic. Quite possibly other transforms such as a member of the Box-Cox family of
transformations could induce normality in the arsenic data but we did not pursue the issue
further.

Next we checked for heteroskedasticity, a situation in which different subregions have different
variances. Heteroskedasticity can lead to changed significance levels for ANOVA statistics and
hence incorrect inferences. SpaceStat uses the Koenker-Bassett test when the errors are normal
and the data are few. For non-normal error distributions (of which we have one), SpaceStat uses
the Breusch-Pagan test. We found heteroskedasticity in only 4 of the 30 cases: selenium in
January and August, mercury in April, and zinc in August.

Finally, we checked for spatial dependence of the errors using the various LM statistics and their
robust forms. We found spatial dependence in 9 of the 30 cases. In two of these cases (silver and
cadmium in April), the LM,,,.,, statistic indicated the presence of a higher-order process. In the
other seven cases, the LM,,, statistic or its robust form was significant, which tends to support
our belief that the spatial dependence in the Estuary arises primarily from transport processes.
In one of these cases (selenium in April), both the robust spatial lag and spatial error terms were
significant. As each of these tends to protect against effects of the other kind of dependence, the
results suggest that some higher-order process is at work involving both spatial lag and error
processes.

These diagnostic tests occur in various combinations. In the 19 cases where errors were normal
(after log transforming, if necessary) and there was neither heteroskedasticity nor spatial
dependence, the OLS model could be used directly for assessing differences among subregions
with the F-test (Table 5).

In the one case where errors were normal and there was no spatial dependence but
heteroskedasticity was present (mercury in April), we used a robust form of the OLS model that
compensates for heteroskedasticity (MacKinnon and White, 1985). In the other three cases with
heteroskedasticity, spatial dependence was also present. As spatial dependence can masquerade
as heteroskedasticity, we decided to treat these in the same way as the other spatially dependent
cases.

We estimated a spatial lag model for the six spatially dependent cases which had a significant
LM,,, statistic (robust or otherwise) (sample output in Table 7). The remaining three spatially
dependent cases exhibited signs of a higher-order model, which currently cannot be estimated in
SpaceStat. In two of the six spatial lag models, the heteroskedasticity that was present in the
OLS model persisted.



For the 20 well-behaved OLS models (robust and otherwise), we detected significant spatial
dependence in all but 2 cases: January cadmium and August arsenic. For the four well-behaved
spatial lag models, we detected significant spatial dependence in all cases. To sum up, we were
able to estimate well-behaved ANOVA models in 24 of the 30 cases, and we found evidence for
distinct spatial subregions with 22 of the 24 models.

Pairwise Differences

The spatial ANOVA analyses were conducted as a dummy variable regression with no constant
and an indicator variable for each region (with a value of 1 for stations in the region, 0 otherwise).
The variance of a pairwise difference is (Snedecor and Cochran, 1967):

var(X, — X,) = var(X,) + var(X,) -2 cov(X X,), (5)

where the X, are subregion means. These variances and covariances are given by

the coefficient variance-covariance matrix in the case of OLS, and the asymptotic
variance-covariance matrix in the case of spatial lag models. For OLS, the

significance of (X, — X, )/ .Jvar()_(1 —X,) is tested with the ¢-distribution; for spatial
lag models, the significance is tested with the standard normal distribution.

Several patterns were seen (Table 8). The most common, which occurred in 18 of the 24 models,
was a depression of Central Bay concentrations with respect to both South and North Bay
concentrations. In two of these cases (event 14 chromium, event 12 mercury), North Bay
concentrations were greater than those in South Bay. Cadmium and selenium had the most
unusual distributions. Cadmium showed either no subregional differences (event 12) or a pattern
in which South Bay values were elevated. Selenium values were also elevated for South Bay, at
least compared to North Bay (event 12). Finally, note that a pairwise difference was detected for
arsenic during event 14, despite the fact that the ANOVA was not significant. Some statisticians
caution that special comparisons should not be considered significant if the overall test is not
(Snedecor and Cochran, 1967).

CAusAL MECHANISMS
Source Identification

As discussed above, mixing creates a spatial averaging effect where the values at neighboring
locations tend toward each other. The further away the location, the less influence it will have.
The spatial weights matrix for a given sampling event and variable explicitly describes how the
effect of neighboring locations drops off with distance. Using the spatial weights matrix, we can
predict in some sense the contribution of mixing to the concentration at a given location by the
concentrations at all the others. Large deviations from this prediction then suggest the presence
of important accumulations or deficits. In fact, the difference between the value expected on the
basis of the spatial weights matrix and the actual value enables us to pinpoint the location of
these anomalies in an efficient and objective way. Whether or not these anomalies are due to
unusually large local sources, sinks, or both cannot be determined without additional information.

Our approach is graphical and makes use of a diagram called the Moran scatterplot (Anselin,
1994). Moran’s I statistic describes the degree of linear association between a vector of observed
values y and a weighted average of the neighboring values Wy, where W is the spatial weights
matrix. Wy is sometimes called a spatial lag. If the y are standardized in deviations from their
mean, then Moran’s I is simply the slope of the regression of Wy on y (Figure 5). Points lying near
the regression line are “typical” in terms of their relations to their neighbors. Points lying far
below the line, however, have a higher y than one would expect. These are locations where a
positive anomaly in concentration occurs, which may indicate a local source.

One of the problems with the I statistic is its susceptibility to single observations that can exert a
large influence on the slope. Large sources may fall into this category, pulling the regression line
toward them and diminishing our ability to detect them. In order to have a measure of the central
tendency that was more robust to the presence of outliers, we also calculated a least trimmed



squares robust regression line. This line minimizes the sum of the smallest half of the squared
residuals, as opposed to minimizing the sum of all of them. We then measured the residuals from
this robust regression line and identified the three most negative on each graph by labeling them
with their corresponding station code. These three stations usually included those stations that
could be considered to lie unusually far from and below the robust regression line.

The stations with the most important positive anomaly for an individual trace element (total
concentration) during sampling event 13 are listed in Table 9. Note that a positive anomaly
suggests the location of a source, not its relative importance. For example, consider two point
sources that contribute the same trace element flux to the Estuary, one with low concentrations
and high discharges, the other opposite. The former will tend to be more similar to its neighbors
and therefore less likely to stand out in a Moran scatterplot.

Tests of Association

In addition to proximity to sources, trace element distributions will be influenced by water quality
variables such as total suspended solids (T'SS) and chlorophyll a. Because of the limited amount of
data, it is not possible to test simultaneously for the nature and importance of all the potential
effects. With only 24 stations per sampling event, for example, one cannot expect to explore more
than 2 explanatory variables at a time, at most, aside from the variable of spatial location. There
is a way to take the results of individual tests and combine them into a larger causal picture,
which we shall describe below. First, however, we have to decide exactly how to do the individual
tests, keeping in mind that spatial autocorrelation precludes the use of conventional statistics.

One possibility is through spatial regression. The ANOVA examples discussed above are simply
a special case of how spatial correlation can be included in studying the relationship between a
dependent and one or more predictor variables. In the ANOVA case, the predictor variables are
subregions. In other cases, we might be interested in other predictive variables, including
continuous ones such as salinity and T'SS. A complication arises because many of these other
predictor variables themselves often have a spatial structure. One outcome is that the spatial
error model or perhaps a more complicated one will be more appropriate than the spatial lag
model.

Another approach called the Mantel test can be used to analyze complications due to the presence
of spatial dependence (Mantel, 1967). The Mantel test basically examines for any (multivariate)
variables X and Y how the differences between pairs of stations are correlated rather than the
stations themselves. In order to calculate a (normalized) Mantel statistic, one first needs to decide
on a measure of difference between stations. Here we use euclidean distance as a measure. For
univariate variables, this is simply the absolute value of the difference between two stations. A
distance matrix is constructed for each variable (each entry is the euclidean distance between the
corresponding row and column variables) and then a correlation coefficient is calculated for the
two matrices. We use the Pearson correlation coefficient for illustrative purposes, although in
principle more robust choices can be made. The usual significance tests are not valid, but the
significance of the statistic can be determined by randomly permuting one of the distance
matrices and recalculating the statistic, at least 1,000 times. One major advantage of the Mantel
test is that station location itself (e.g., UTM coordinates) can be used as one of the variables, in
which case one has a simple straightforward test for the presence of spatial dependence in a
variable.

The Mantel test can be extended in a very important way to take into account how spatial
structure might be affecting the (and even causing a spurious) relation between two variables. In
an estuary, most variables have a strong large-scale structure simply due to the presence of
mixing. This mutual structure will tend to induce correlations between many variables, even
though they have no real causal connection. The partial Mantel statistic provides a means for
handling such situations (Smouse et al., 1986). If we are interested in the relation between X and
Y corrected for the influence of U, then we first construct distance matrices for each of the three
variables. The residuals X, are then calculated from the regression of the X distance matrix on
the U distance matrix, and similarly for Y,. Finally, the correlation between X, and Y, is
calculated as above. The significance can be determined by random permutation of one of the
residual matrices, holding the other one constant.



For illustration, we examined the associations between each of 10 trace elements and TSS for
sampling event 12. Most of the associations are significant when we use the simple Mantel
statistic (row 1 of Table 10). On the other hand, when we calculate the partial Mantel statistic,
which removes the spatial effect by first regressing distance matrices for trace elements and TSS
on interstation distances, only one of the eight (chromium) correlations remain significant. This
example clearly illustrates how spurious spatially-generated correlations can arise in estuaries,
as well as of the utility of the partial Mantel statistic in detecting and correcting for these.

ANALYZING CAUSALITY

The Mantel and partial Mantel statistics in principle can be used to build up a model of causality
for trace element distributions. The procedure involves a listing of all possible models, followed by
an analysis of the consistency between each model and the correlations and partial correlations
among the components of the model (Legendre and Trousellier, 1988). As an example, we will look
at a three-component model consisting of spatial location, a trace element total and a cognate
variable. The corresponding distance matrices are SPACE, TE, and COG. The eight possible
models, assuming that the cognate variable can determine trace element concentrations, but not
vice versa, are listed in Table 11. Note that our set of models differs from those of Legendre and
Trousellier by this assumption, as well as by including possibilities (models 5-8) where some or
all connections may be absent.

Each model has a set of correlations and partial correlations that should be significant, a set that
should not be significant, and arithmetic relations among the correlations and partial correlations
that should hold. As an example, the following relationships should hold if model 4 is true:

COG-SPACE should be significant
TE-SPACE should be significant
(TE-SPACE)-COG should be significant
(COG-SPACE)-TE should be significant
(TE-COG)-SPACE should not be significant
(TE-SPACE)-COG < TE-SPACE
(COG-SPACE)-TE < COG-SPACE

8. (TE-SPACE) x (COG-SPACE) = TE-COG

Each model needs to be checked for consistency with its corresponding relationships. As an
example, we examined the trace element totals for sampling event 12 using T'SS as the cognate
variable. The relevant statistics are listed in Table 10. In this particular case, none of the models
were found to be consistent with the data. For example, we can eliminate model 4 for all trace
elements simply because the third condition above is violated in the case of every trace element.

No oe e

One possible reason for the inability to select a model is that the power of the tests are too low. In
other words, some of the relationships are true but were rejected by chance because the
probability of a Type II error (rejecting a true hypothesis) is too large. One can address this
problem in part by taking another approach, namely by eliminating only those models for which
Mantel statistics that should not be significant are in fact significant. Here, the potential errors
are equivalent to the probability of a Type I error (accepting a false hypothesis), which is set to
only 5%. Let us examine chromium as an example. First, we can eliminate models 1, 6, 7, and 8
as these imply that COG-SPACE should not be significant, contradicting line 3 of Table 11 (in
fact, this association eliminates these models for all trace elements). Next, we can eliminate model
5 because TE-SPACE is in fact significant. Further, we can eliminate model 4 because
(TE-COGQG)-SPACE is significant for chromium, leaving only models 2 and 3 as possibilities. This is
as far as we can go: neither of these models can be eliminated risking only a Type I error.
Nonetheless, the result is of interest as it leaves only models in which TSS has a direct effect on
chromium, supporting the contention that their association is not a spurious one.

Another possible reason that the causal analysis does not settle on a single model is the presence
of other factors that can mediate a spatial effect on cognate variables or trace elements. One of
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the models of Table 11 could then correctly express the causal relations among SPACE, COG,
and TE, yet there would be additional unexpected correlations due to connections that cannot be
seen from the narrow perspective of these three-variable models. This possibility of course is
always lurking no matter what kind of statistical or dynamic modeling one undertakes.

There are two implications from the considerations of this section that should be emphasized.
First, if statistical associations between trace elements and possible causal factors are going to
be explored, then spatial effects must be taken into account and the relations must be explored in
the context of a causal analysis framework. One can conclude very little from a single association,
particularly in a spatially-structured estuary.

Second, because of the probably complex causal nexus and the possibility of Type II errors, a
statistically-based causal analysis will at best be able to narrow down the set of possible models,
which will be of some help but probably not sufficient. Additional stations can only help, but it is
difficult to know how many are really necessary and there is a possibility of wasting any effort on
more stations, at least in this particular context. Regardless of the success of a statistical
analysis, understanding of these causal relationships must be founded also on general chemical
and ecological understanding, as well as non-RMP data sets and experimental work. As the RMP
encounters the limits of its baseline data collection program in assessing causality on a statistical
basis, more attention should be given to how other kinds of field measurements and experiments
can narrow down even further the set of possible models.

TEMPORAL TRENDS
Trend Testing for Individual Sites

The trace element totals are plotted as time series in Figure 6. Generally speaking, these plots
with vertical lines at each data point are superior to plots in which successive data points are
connected by a straight line when there are many data gaps (see plots for zinc). The eye tends to
impute trends to the latter type of plot even when they are not warranted by the data frequency.
One could, of course, simply plot data points and not connect them with lines, but many find these
vertical-line plots less confusing when there is a lot of short-term variability. It is also common to
refine the vertical-line plots so that the long-term mean of the data is first removed and the
anomalies (departures from the long-term mean) are plotted. Trends can often be seen more
clearly using anomalies, although they have the disadvantage of requiring an additional step
(adding back the mean) in order to determine the value of an individual point, plus they are
largely unfamiliar to lay people. One obvious disadvantage of the plots in Figure 6 stems from the
fact that all scales are constrained to be the same: in some cases, data fall too close to the
abscissa and it is difficult to discern temporal behavior. If these details must be seen, then the
scales can allowed to float free from each other, but this has the disadvantage of requiring an
explicit scale for each panel of the plot and a consequent decrease in size of the panels and
increase in clutter (see plots for zinc).

The Mann-Kendall test is widely used for trend testing, particularly when many time series need
to be evaluated at the same time. The Mann-Kendall test is basically an application of Kendall’s
tau correlation coefficient to the case in which one of the variables is time. It has the following
important advantages (among others): no assumption of normality is required; it is resistant to
outliers; and it admits censored data (as only ranks are used). These characteristics are big
advantages when analyzing for trends in many time series (such as multiple trace elements at
multiple stations), because they mean that it is not necessary to screen the data for normality
and lack of outliers and the number of degrees of freedom can be increased by including censored
data.

Accompanying the Mann-Kendall test is a method for estimating a robust trend line, called the
Thiel slope. The Thiel slope is simply the median slope for the set of lines joining all possible pairs
of points in a time series. The significance of the test for significance of the Thiel slope is identical
to the significance of the Mann-Kendall test. Both the Mann-Kendall test and Thiel’s robust
estimate of the trend line have been shown to be superior to equivalent parametric tests with only
slight departures from normality. Water quality data are usually skewed and often ill-behaved in
other respects, which suggests that trends should be quantified and assessed using these more
robust approaches.
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One remaining requirement of these robust tests is that the serial correlation between successive
sampling days is small. We believe that the intervals between sampling days are so large that
serial correlation is not a problem. The samples are not taken during the same hydrological event
such as a pulse flow, for example, which could induce such correlation. The data are still so few
that a statistical test of this assumption has very little power, so we will assume it solely on
scientific grounds for now.

We applied the Mann-Kendall test to the period 1991-1995. Values of Kendall’s tau for the
individual tests are shown in Table 12. Only 3 of the 240 tests are significant, even fewer than we
might have expected on the basis of chance.

The trend results can be further explored by mapping them (Figure 7). Here we have relaxed the
definition of a significant trend (p<0.1). Despite the lack of significance of most of the trends, their
pattern in space is often nonrandom. Groups of contiguous uptrends or downtrends give more
weight to the presence of a spatially localized trend than do the sites considered individually. In
the case of copper, for example, there seem to be four clustered areas of homogenous trend. The
group south of the San Bruno Shoal tends to be increasing, as does the group extending from
northern Central Bay through western Suisun Bay. Note that the river and east Suisun Bay
stations are decreasing, suggesting that the zone of increase in the northern Estuary is due to
influences from local discharges and the Napa and Petaluma rivers, not from upstream in the
Delta and beyond. Examination of the trend patterns, even when the individual trends are not
significant, can lead to further hypotheses and understanding.

Combining Tests from Multiple Sites

The apparently nonrandom spatial distribution of up- and downtrends such as for copper, even
when trends at individual stations are not significant, lead us to ask whether there is any way to
consider contiguous sites simultaneously. The seasonal Kendall test for individual sites suggests
a possible and novel approach to this problem. In a seasonal Kendall test, the Mann-Kendall test
is applied to each season (e.g., month or quarter) separately and then the results are combined
for an overall test (Hirsch et al., 1982). Each season by itself may show a positive trend, none of
which is significant, but the overall seasonal Kendall statistic can be quite significant. The test
has all the advantages of the Mann-Kendall test, offering higher power because it removes short-
term variability caused by seasonality that would otherwise appear as background noise in a
Mann-Kendall test for the whole time series. When successive seasons are correlated, as they
may be if seasons are defined by months or smaller intervals, a correction must be used based on
the covariance among seasons (Hirsch and Slack, 1984).

In principle, the seasonal Kendall test can be applied to multiple variables or multiple sites
instead of seasons. In our case, this means that the tests for trace element trends at individual
contiguous sites can be combined into an overall test for the subregion consisting of all of these
sites; we might call this a spatial Kendall test.

One difficulty with the seasonal Kendall test is that trends of opposite sign in different seasons
may cancel each other out, giving the impression that no trends are present. Similarly, the
spatial Kendall test may show no significant overall trend, even though trends are significant
within contiguous subsets of the sites. Careful consideration of how sites are to be grouped is
necessary. One can use contrast statistics to test for trend homogeneity (van Belle and Hughes,
1984; Lettenmaier, 1988), but graphical exploration of the data combined with a scientific
understanding of the problem should be a good guide on how to group contiguous sites. In the case
of copper, for example, the sites clearly fall into four subgroups.

As an example, we applied the spatial Kendall test to the copper data (Figure 7), including the
covariance correction (Table 13). The seasonal Kendall statistic, its standard error and the large-
sample approximation for the significance level are given. None of the four subgroups exhibit a
significant trend as a group of stations.

Adjusting Data to Reduce Short-Term Variance

Exogenous variables. Most ecological variables will exhibit significant short-term variability that
tends to disguise more long-term systematic changes, including trends, that we might be
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interested in. In the case of stream or estuarine chemical concentrations, streamflow is often the
generating mechanism behind this shorter-term variability. If we can remove this “noise”, i.e.,
this variation due to “exogenous” variables such as streamflow, then we are more likely to
determine if a trend is present. All tests become more powerful when the variance is reduced.
Adjusting concentrations for streamflow, usually by regressing the concentrations on streamflow
and working with the residuals, is a common procedure in trend analysis of stream chemistry.

One requirement is that the probability distribution of the exogenous variable does not change
over the period of interest. If it does, then a trend in the residuals may not be due to a trend in the
trace contaminant of interest. With the relatively small number of observation times in this data
set, we cannot test for a changing probability distribution with any power and must assume an
unchanging distribution in the exogenous variable.

As an example, consider the effect of Net Delta Outflow (NDO) on trace element concentrations.
We will take a “mixed approach”, in which the effects of NDO are removed by regression and a
Mann-Kendall test is applied to the residuals. It is also possible to take a fully nonparametric
approach in which the exogenous variable’s effect is removed through some smoothing procedure
such as LOWESS (locally-weighted scatterplot smoothing). One can also take a fully parametric
approach using multivariate regression with the exogenous variable and time as explanatory
variables. The more nonparametric the approach, the fewer the assumptions necessary; the more
parametric, the higher the power...if the necessary assumptions are actually fulfilled. Careful
graphical examination is required in the latter case.

A summary of the significance levels for regression of trace element totals on NDO is given in
Table 14. For most elements, the number of significant regressions could be expected on the basis
of chance alone. For arsenic, selenium and especially cadmium, however, NDO has a marked
relation with water column concentrations. We examined the data for cadmium in more detail
(Figure 8). Although we did not undertake a detailed examination of the residuals, the regression
lines appear to do an adequate job of capturing the relationship. There appears to be more
scatter at the low flows, but this may be due only to the higher data density at low flows. Note
that the slopes are consistently negative, suggesting a dilution of point sources.

Time series plots of the residuals (Figure 9) can be compared with the uncorrected total cadmium
levels (Figure 6). Of particular interest are the 1995 data points, which are no longer negligible
and therefore do not exercise such a strong influence toward negative trends. The statistics from
the Mann-Kendall test of trend are summarized in Table 15. The downtrend of BG30 is now
eliminated (cf. Figure 7) and uptrends appear for BD40 and BD50 in the vicinity of the Napa
River. Removal of NDO effects has therefore revealed that the BG30 trend is due largely to the
effects of dilution from river flow, and that there may have been a local increase in cadmium in
Napa River sources that was disguised by interannual variability in flow.

Choosing the exogenous variables for correction must be done with care, guided by a specific goal.
If we are specifically interested in anthropogenic trends, the exogenous variable itself must be
free of human interference. In the case of San Francisco Bay, for example, Net Delta Outflow
would then not be a suitable exogenous variable. The principles on which Delta hydrology is
managed has changed over the years and will probably continue to change in the future. By
removing the effects of Delta outflow, we could well be removing a major human influence on trace
contaminant concentrations. The same can be said for any index of salinity distribution (such as
X,), as the salinity field is so closely tied to Delta outflow. An index of discharge that is unaffected
by human hydrological manipulations, such as for example the Four River Index, is more suitable
as an exogenous variable. On the other hand, if we are trying to investigate local source
variability independently of other anthropogenic influences such as flow through the Delta, then
NDO is the appropriate correction to use.

Seasonality. Seasonal changes may also induce “background” variability that interferes with the
detection of longer-term systematic changes. The seasonal influence may be mediated completely
by stream discharge, in which case there is no need to act separately on this problem. But
seasonality can remain even after streamflow effects have been removed. Trace element sources,
for example, may have a distinct seasonal pattern. Several methods exist for dealing with
seasonal effects, but they fall into two main categories: (1) treat season as a separate variable in
a regression, either as dummy variables or with the use of periodic functions, or (2) conduct trend
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tests only within corresponding seasons and combine the results for all seasons (e.g., seasonal
Kendall test).

Given the present size of the data set, correcting for seasonality is premature. Unlike the earlier
“pilot” years, the RMP program (beginning in 1993) has sampled consistently in the first three
quarters (Table 16). If this consistency is maintained, it will eventually be possible to examine the
efficacy of a seasonality correction. We do not recommend such an approach at this stage. For
example, treating quarter of the year as a separate variable in a regression requires the use of
three dummy variables, resulting in a large percentage decrease in the degrees of freedom.
Under these circumstances, corrections can have only a large uncertainty, resulting in at best no
advantage and at worst the introduction of some spurious and distorting correction factor. Given
the regularity of sampling during the second quarter over the pilot and RMP program years
(Table 16), it might be of interest to examine trends at available sites using the data for this
quarter only.

Mixing diagrams. It is sometimes suggested that using the residuals determined by joining the
end members in a mixing diagram can help remove noise due to upstream influences. To examine
this further, consider two cases, the first in which outflow changes and the second in which
outflow concentrations change. In the first case, the higher the freshwater inflow, the more diluted
will be local point sources, and the smaller the trace element concentration at these local point
sources. This will be true whether the concentration is expressed in absolute terms or is
measured as a residual from a mixing diagram. The residuals therefore do tell us the locations of
possible local sources and sinks but in no way do they eliminate the effects of varying discharge.
In the second case, the residuals are in fact uninfluenced by the changing end member
concentration. On the other hand, if local concentrations increase as a result of upstream source
increases, then the increase should be considered part of a real trend in the Estuary and not
simply a result of freshwater discharge fluctuations. We therefore do not want to remove this
effect from the data when examining for trends. In summary, residuals from mixing diagrams
will be useful for diagnostic purposes, but they should not be used as a “corrected” form of the
data.

SUMMARY AND CONCLUSIONS

1. Horizontal stratification of the Estuary can be of value in reducing the variance of
global estimates such as the mean. We investigated model-based clustering of the
trace element data as a means for choosing the strata in the case of San Francisco
Bay. Two problems were encountered. First, the data are sufficient to identify at most
only two significant clusters for any sampling event. Second, the clusters change both
with the trace element in question and the sampling event. The first problem is a
consequence of the limited data. The second problem is an underlying feature of the
Estuary. As a result, we believe that the use of clustering in this context is unlikely to
be of help, and is prone to mislead unless cluster statistical significance is also
assessed. Note that stratification of the Estuary does not have to be optimal in order
to be effective in reducing variance so that clustering and other “objective” approaches
are not actually necessary.

2. In any case, stratification to reduce variance is currently a moot point as the RMP
stations are not a probability sample to begin with and cannot provide proper
estimates of the Estuary’s mean and variance. The desirability of such global
estimates and a possible redesign of station siting needs to be considered carefully.

3. Stratification can also be pursued for other reasons, such as to identify local point
sources. A visual examination of the total trace element spatial patterns leads to the
choice of three or four subregions: (1) south of San Bruno Shoal; (2) San Bruno Shoal
through Point San Pablo; (3) north of Point San Pablo. The latter stratum can be
further subdivided between Honker and Grizzly bays, although this leaves only three
stations in the upstream stratum.

4. Spatial autocorrelation in estuaries potentially precludes the use of classical ANOVA
for assessing subregion differences. Spatial ANOVA, in which individual sites are
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influenced not only by their location within subregions but also by the values at
neighboring sites, provides the solution. We examined the data for ten trace elements
during 3 sampling events. We were able to determine well-behaved models in 24 of the
30 cases; 4 of the 24 cases required incorporation of spatial autocorrelation effects. In
22 of the 24 cases, we found evidence for distinct spatial subregions. Further
analyzing the pairwise differences, the most common pattern (18 of 24 cases) was a
depression of “Central Bay” (stratum 2 above) concentrations with respect to both
“South” and “North” bay levels; means of the latter two were not significantly different
in these cases.

5. Anomalous stations for any trace element and sampling event can be identified using
the Moran scatterplot. Using a robust fit to the Moran scatterplot, we identified the
most important positive anomalies for each trace element during sampling event 13.
Positive anomalies can be interpreted as important sources. The San Jose station was
the most common anomaly, followed by the Petaluma River.

6. Spatial autocorrelation in estuaries will result in potentially spurious correlations
between almost any two variables. The partial Mantel test can be used to examine
correlations among variables that are also spatially autocorrelated. As an example, 9
of 10 trace elements were correlated with TSS during sampling event 12, but only one
association remained after spatial autocorrelation was accounted for using the partial
Mantel statistic. Note, however, that this is a conservative procedure in that a true
relationship may exist between other trace elements and TSS, but one cannot use a
correlation as evidence because of the posssible confounding effect of spatial structure.

7. Proper statistical testing of causal connection between two variables does not consist
of a single association test, even if it incorporates a correction for spatial
autocorrelation. A causal analysis includes an array of possible models, as well as the
associations, lack of associations and arithmetic relationships among associations that
accompany each model. The RMP data are very limited in their ability to support
such a causal analysis, primarily because of low power. The data are sufficient to
narrow down the range of possible models, however. An example using chromium
supports a direct effect of TSS on chromium. In general, though, the RMP should not
expect any definitive causal analysis resulting from statistical analysis of the RMP
data set and should accordingly support other field and experimental approaches to
determining underlying mechanisms.

8. The Mann-Kendall test is an appropriate way for determining trace element trends at
individual sites. Individual site trends are by and large not significant. When trends
are mapped in space, however, trends of the same sign tend to occur contiguously in
apparently nonrandom clusters and suggest systematic changes for subregions of the
Estuary.

9. The seasonal Kendall test can be adapted to test for an overall trend in groups of
stations. The increase in the power is such that an overall trend may exist even when
no trends can be detected for individual sites. Mapping of the individual trends can
guide selection of station groupings. A correction must be made for the covariance
among stations, similar to the correction for covariance among months in the
conventional use of the seasonal Kendall test. An example is given with copper, but no
overall trend was detected for any of the four subregions.

10. The power of trend tests can be increased by removing exogenous sources of short-
term variance. Residuals are determined for a parametric (regression) or
nonparametric (LOWESS) fit of the data and a Mann-Kendall test is applied to the
residuals. An example is given using Net Delta Outflow (NDO) and cadmium. NDO
has a negative effect on cadmium at all stations. Before accounting for NDO, only the
San Joaquin station exhibited a (down)trend. After accounting for NDO, this station
no longer had a significant trend while two stations near the Napa River showed
significant uptrends. Selection of the exogenous variable depends on the exact
question being asked and must be considered carefully.
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11. Seasonality may also contribute to short-term variability, even after correcting for
seasonal exogenous variables such as flow. The data set is too small at present to
correct for seasonality using a dummy variable approach. At certain stations, data

may be sufficient for trend tests using second-quarter data only, thus averting the
issue of seasonality.
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APPENDIX A
TABLES



Table 1. RMP and pilot study sampling stations.

Station Code Lat Long

deg min sec deg min sec
Alameda BB70 37 44 50 122 19 24
Alcatraz 10-AZ NA NA NA NA NA NA
Alcatraz 11-AZ NA NA NA NA NA NA
Angel . 12-Al NA NA NA NA NA NA
Angel I. / Treasure |I. 09-Al NA NA NA NA NA NA
Benicia Br. 19-BB NA NA NA NA NA NA
Benicia Br. BE10 NA NA NA NA NA NA
Berkeley Flats 15-BF NA NA NA NA NA NA
Berkeley Flats BC40 NA NA NA NA NA NA
Berkeley Flats 09-Al NA NA NA NA NA NA
Chipps I., nr Buoy #20  25-Cl NA NA NA NA NA NA
Coyote Creek BA10 37 28 11 122 3 50
Davis Pt. BD40 38 3 7 122 16 37
Dumbarton Br. 02-DB NA NA NA NA NA NA
Dumbarton Br. BA30 37 30 54 122 8 7
Extreme South Bay 01-xsb NA NA NA NA NA NA
Golden Gate 10-GG NA NA NA NA NA NA
Golden Gate 11-GG NA NA NA NA NA NA
Golden Gate BC20 37 48 13 122 30 23
Grizzly Bay 21-GB NA NA NA NA NA NA
Grizzly Bay BF20 38 6 58 122 2 19
Hayward Flats 05-HF NA NA NA NA NA NA
Honker Bay 23-HB NA NA NA NA NA NA
Honker Bay 22-HB NA NA NA NA NA NA
Honker Bay BF40 38 4 2 121 55 56
Hunter’'s Pt. Channel 08-HP NA NA NA NA NA NA
Hunter's Pt. BB40 NA NA NA NA NA NA
Napa R. BD50 38 5 47 122 15 37
New York Slough BG10 NA NA NA NA NA NA
New York Slough 27-NYS NA NA NA NA NA NA
New York Slough 26-NYS NA NA NA NA NA NA
Oyster Pt. BB30 37 40 12 122 19 45
Pacheco Creek 20-PCK NA NA NA NA NA NA
Pacheco Creek BF10 38 3 5 122 5 48
Petaluma R. BD15 38 6 37 122 29 13
Petaluma R. 16-PR NA NA NA NA NA NA
Pinole Pt. BD30 38 1 29 122 21 39
Pinole Shoal Channel 17-PSC NA NA NA NA NA NA
Pinole Shoal Nearshore 18-PSN NA NA NA NA NA NA
Pt. Isabel BC41 37 53 2 122 20 33
Port Chicago 22-PTC NA NA NA NA NA NA
Port Chicago 23-PTC NA NA NA NA NA NA
Port Chicago BF30 NA NA NA NA NA NA
Red Rock BC60 37 55 0 122 26 0
Redwood Creek 03-RC NA NA NA NA NA NA
Redwood Creek BA40 37 33 40 122 12 34
Richardson Bay BC30 37 51 49 122 28 40
Sacramento R. 26-SR NA NA NA NA NA NA
Sacramento R. 27-SR NA NA NA NA NA NA

Sacramento R. BG20 38 3 34 121 48 35
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Table 2. RMP and pilot sampling events.

Event Start Finish
1 2 Apr 1989 2 Apr 1989
2 9 Aug 1989 11 Aug 1989
3 2 Dec 1989 2 Dec 1989
4 15 Jun 1990 15 Jun 1990
5 19 Sep 1990 21 Sep 1990
6 12 Jun 1991 14 Jun 1991
7 8 Apr 1992 11 Apr 1992
8 3 Mar 1993 6 Mar 1993
9 25 May 1993 28 May 1993

10 14 Sep 1993 17 Sep 1993
11 31 Jan 1994 9 Feb 1994
12 19 Apr 1994 29 Apr 1994
13 16 Aug 1994 25 Aug 1994
14 7 Feb 1995 16 Feb 1995
15 19 Apr 1995 28 Apr 1995

Table 3. Trace element data available from sampling events 7-15
for model-based clustering of sampling sites .

Event

Ag As Cd Cr Cu Fe

Pb

Se

7
8
9
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11
12
13
14
15
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Table 4. Definition of a stratification scheme for the MIDAS transects in San
Francisco Bay. Locations are specified in terms of UTM coordinates.

Stratum Description Size £SD Northing Easting
No. (km) (km) (km)
1 south of Dumbarton Br. 6.9 £0.3 <151.4
2 Dumbarton Br. to San Bruno 23.3 0.6 151.4-165.3
Shoal
3 San Bruno Shoal to Angel I. 28.7 £0.7 165.3-188.8
4 Angel I. to Mare I. 37.3 ¥2.2 >188.8 <564.6
5 Mare I. to Martinez 13.1 £1.1 >209.3 564.6-574.5
6 east of Martinez 51.8 +1.7 >209.3 >574.5
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Table 5. Sample SpaceStat output from an OLS ANOVA for In-transformed chromium
(event 13).

ORDINARY LEAST  SQUARES ESTIMATION
DATA SET EVENT13
DEPENDENT VARIABLE LNCRT OBS 24 VARS 3 DF 21

R2 0.6853 R2-adj 0.6553

LIK  -22.4857 AIC  50.9714 SC  54.5055
RSS 9.15211 F-test 50.7176 Prob 8.56E-10
SIG-SQ 0.435815 (0.660163) SIG-SQ(ML) 0.381338 (0.617526)
VARIABLE COEFF  S.D. t-value Prob

REG_12.16004 0.26951 8.014686 0.0000
REG_20.106689 0.233403 0.457103 0.6523
REG_31.95511 0.208762 9.36529 0.0000
COEFFICIENT VARIANCE MATRIX

REG_1

0.072636 0 0

REG_2

0 0.054477 0

REG_3

0 0 0.043582

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 1

TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Kiefer-Salmon 2 1.086929 0.580733

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHTS MATRIX INVD2STD (row-standardized weights)

TEST MI/DF VALUE PROB

Moran's I (error) 0.129686 2.0869 0.036894
Lagrange Multiplier (error) 1 0.8034 0.370092
Robust LM (error) 1 0.2355 0.627473
Kelejian-Robinson (error) 3 2.155585 0.5408
Lagrange Multiplier (lag) 1 1.4294 0.231868
Robust LM (lag) 1 0.86150.353315

Lagrange Multiplier (SARMA) 2 1.6649 0.434989




Table 6. Summary of spatial ANOVA diagnostics.
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Table 7. Sample SpaceStat output from a spatial lag ANOVA for lead (event 13).

SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION
DATA SET EVENT13 SPATIAL WEIGHTS MATRIX INVD2STD

DEPENDENT VARIABLE LNPBT OBS 24 VARS 4 DF 20
R2 0.669 Sq. Corr. 0.7275

LIK -20.6559 AIC  49.3117 SC 54.024

SIG-SQ 0.29924 (0.547028)

VARIABLE COEFFS.D.  z-value Prob
W_LNPBT 0.549267 0.183552 2.992433 0.002768

REG_10.3657 0.238328 1.53444 0.124922
REG_2-0.82209 0.252982 -3.24961 0.001156
REG_30.295845 0.177063 1.670851 0.094751
COEFFICIENT VARIANCE MATRIX

W_LNPBT

0.033691 -0.01528 0.029934 -0.00693 -0.00384
REG_1

-0.01528 0.0568 -0.01357 0.003144 0.001743
REG_2

0.029934 -0.01357 0.064 -0.00616 -0.00342

REG_3

-0.00693 0.003144 -0.00616 0.031351 0.000791
SIGMA-SQ

-0.00384 0.001743 -0.00342 0.000791 0.007901

REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR SPATIAL DEPENDENCE

SPATIAL LAG DEPENDENCE FOR WEIGHTS MATRIX INVD2STD (row-standardized
weights)

TEST DF VALUE PROB

Likelihood Ratio Test 1 4.688028 0.030373
LAGRANGE MULTIPLIER TEST ON SPATIAL ERROR DEPENDENCE
WEIGHT STAND ZERO DF VALUE PROB

INVD2STD yes no 1 0.00163 0.967796
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Table 8. Summary of spatial ANOVA results.

Element Event Model Subregions Pairwise Differences
Different?
Ag 12 OLS y NB>CB, SB>CB
13 - - -
14 OLS y NB>CB, SB>CB
As 12 oLS 4 -
13 LAG y NB>CB, SB>CB
14 OLS n NB>CB
Cd 12 OLS n none
13 - - -
14 OoLS y SB>CB, SB>NB
Cr 12 OLS y NB>CB, SB>CB
13 OLS y NB>CB, SB>CB
14 OLS y NB>CB, SB>CB, NB>SB
Cu 12 OLS y NB>CB, SB>CB
13 OLS y NB>CB, SB>CB
14 OLS y NB>CB, SB>CB
Hg 12 OLS y NB>CB, SB>CB, NB>SB
13 ROBUST y NB>CB, SB>CB
14 OLS y NB>CB, SB>CB
Ni 12 OLS y NB>CB, SB>CB
13 OLS y NB>CB, SB>CB
14 OLS y NB>CB, SB>CB
Pb 12 OLS y NB>CB, SB>CB
13 LAG y NB>CB, SB>CB
14 OLS y NB>CB, SB>CB
Se 12 LAG y SB>NB
13 - - -
14 LAG 2 -
Zn 12 OLS y NB>CB, SB>CB
13 LAG y NB>CB, SB>CB
14 LAG 2 -

'Diagnostics suggested higher-order process (Table).
2Non-normal.
*Heteroskedastic.
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Table 9. Stations identified from Moran
scatterplots as most important positive
anomaly for each trace element during
sampling event 13.

Trace Element (total) Stations
Silver San Jose
Arsenic Petaluma R.
Cadmium Petaluma R.
Chromium San Jose
Copper San Jose
Mercury Dumbarton Br.
Nickel San Jose
Lead San Jose
Selenium Sacramento R.
Zinc San Jose

Table 10. Mantel tests of association between trace element totals, TSS and spatial

position for sampling event 12. TE, COG and SPACE refer to the respective distance matrices

for the trace element, TSS and spatial position. X-Y denotes the Mantel statistic for X and Y.
(X-Y)-Z denotes the partial Mantel statistic for X and Y given Z. Statistics significant at the

p=0.05 level are in bold.

Association Ag As Cd Cr Cu Hg Ni Pb Se Zn
TE-COG 0.71 0.79 0.34 098 0.93 097 0.91 0.86 -0.12 0.88
TE-SPACE 0.15 0.08 0.33 0.15 0.12 0.16 0.12 0.14 0.59 0.13
COG-SPACE 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
(TE-COG)-SPACE 0.06 0.06 -0.39 0.72 041 056 0.34 041 -054 0.31
(COG-SPACE)-TE -0.31 0.12 -0.18 -0.3 0.01 -0.66 -0.11 0.11 0.13 -0.26
(TE-SPACE)-COG  -0.09 -0.25 0.25 -049 -0.37 -04 -0.32 -0.18 0.61 -0.24
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Table 11. Possible models of causal
relationships among space, a
cognate and a trace element,
assuming that the trace element
does not determine cognate
distribution.

1)  SPACE COG
%

2) SPACE—+>COG
TE

3) SPACE—>COG
fer

4) SPACE> COG
Y

5) SPACE->COG
TE

6) SPACE COG
TE

7) SPACE COG
TE

8) SPACE COG

TE




Table 12. Value of Kendall’s tau for Mann-Kendall tests of trend during the
period 1991-1995. Values in bold are significant (p<0.05).

Code Ag As Cd Cr Cu Hg Ni Pb Se Zn
BA10 -0.4 0.2 -0.2 0.2 0.4 0.2 0 0 0.4 -0.2
BA20 -0.2 0.22 -0.02 0.43 0.2 -0.16 0.02 -0.38 0.07 -0.16
BA30 0.24 0.22 0.02 0.29 0.51 0.47 0.56 0.02 0.54 0.47
BA40 -0.07 0.22 -0.11 0.5 0.02 0.38 0.07 -0.11 0 -0.02
BB15 -0.6 -0.4 -0.4 -0.8 -0.4 -0.2 -1 -0.6 0 -0.6
BB30 -0.11 0.22 0.02 -0.14 -0.02 -0.02 -0.07 -0.38 0.21 -0.07
BB70 -0.6 -1 -0.4 -0.6 -0.4 -0.4 -0.6 -0.6 -0.8 -0.6

BC10 -0.33 0.11 0.02 0.21  -0.02 -0.2 0.02 -0.24 -0.14 0.11
BC20 -0.42 0.06 -0.02 0.14 -0.22 -0.69 -0.29 -0.42 -0.36 -0.27
BC30 -0.38 0.06 -0.07 -0.14 -0.29 -0.29 0.02 -0.2 -0.11 -0.42

BC41 -0.29 -0.29 -0.07 -0.07 0.36 -0.21 0 -0.43 -0:29 -0.07
BC60 0.33 -0.4 -0.2 0.2 0.33 0.73 0.6 0.33 -0.6 0.33
BD15 0.4 0 -0.2 0.4 0.4 0.4 0.6 0.4 0 0.4
BD20 0.2 -0.07 0.07 0.14 0.24 0.2 029 -0.02 0.29 0.2
BD30 0.33 -0.07 -0.06 0.14 0.28 0.33 0.39 -0.22 -0.29 0.39
BD40 0.47 0.5 0.02 0.57 0.38 0.64 0.64 0.16  0.21 0.47
BD50 0.16 0.19 0.02 0.64 0.29 0.42 0.33 0 -0.29 0.2
BF10 -0.02 -0.33 -0.2 -0.21 0.02 -0.02 0.02 -0.16 0 0.09
BF20 -0.11  -0.22 -0.16 0.14 0.11 0.38 0.33 -0.11 -0.14 0.38

BF40 -0.05 -0.2 -043 04 -005 014 033 -005 -0.6 0.24

BG20 -0.28 0.07 -0.36 -0.07 -0.06 -0.02 0.07 -0.24 -0.5 -0.2
BG30 -0.38 0.07 -0.583 -0.29 -0.51 -0.33 -0.38 -0.38 -0.17 -0.56

C-1-3 -0.4 0 -0.4 0.2 0.4 0.4 0.2 0
C-3-0 0.2 0.2 -0.2 0.6 0.4 0.6 0.4 0.2

Table 13. “Spatial Kendall test” statistics resulting
from treating stations as seasons and sampling events
as years. Stations were subdivided into four subgroups as
suggested by the individual trend tests for copper (Figure

7).
Subregion S, Osx Large-sample p
“SB” 45 79.4 0.580
“CB” -31 91.5 0.743
“SP & east SU” 76 98.6 0.447

“rivers & west SU” -26  28.9 0.387




Table 14. Significance (p-value) of slope for linear regression of trace element total on

Net Delta
Outflow.
Code Ag As Cd Cr Cu Hg Ni Pb Se Zn
BA10 0.27 0.239 0.024 0.848 0.948 0.551 0.74 0.794 0.026 0.929
BA20 0.602 0.34 0.004 0.865 0.689 0.767 0.785 0.972 0.053 0.791
BA30 0.803 0.365 0.004 0964 0.835 0.679 0.517 0.851 0.472 0.598
BA40 0.763 0.335 0.015 0.599 0.269 0.894 0.681 0.802 0.155 0.99
BB15 0.048 0.067 0.06 0.484 0.034 0.227 0.389 0.498 0.073 0.621
BB30 0.466 0.271 0.004 0.24 0.122 0.322 0.372 0.613 0.041 0.307
BB70 0.055 0.094 0.063 0.069 0.269 0.021 0.163 0.003 0.124 0.076
BC10 0.399 0.242 0.012 0.611 0.683 0.389 0.882 0.878 0.007 0.437
BC20 0.613 0.087 0.023 0.12 0.573 0.407 0.723 0.993 0.006 0.523
BC30 0.726 0.004 0.016 0.284 0.806 0.337 0.981 0.81 0.287 0.404
BC41 0.743 0.053 0.004 0.556 0.243 0.623 0.223 0.569 0.029 0.42
BC60 0.799 0.008 0.054 0.092 0.075 0.149 0.027 0.19 0.025 0.061
BD15 0.898 0.851 0.02 0.472 0.734 0.689 0.305 0.496 0.681 0.812
BD20 0.345 0.224 0.029 0.785 0.645 0.744 0.256 0.868 0.87 0.764
BD30 0.4 0.067 0.009 0.858 0.965 0.582 0.499 0.932 0.161 0.998
BD40 0.622 0.698 0.014 0.013 0.006 0.006 0.001 0.565 0.446 0.026
BD50 0.852 0.217 0.01 0.478 0.736 0.934 0.444 0.624 0.4 0.963
BF10 0.24 0.02 0.012 0.723 0.773 0.646 0.866 0.945 0.754 0.899
BF20 0.669 0.027 0.021 0.949 0.661 0.745 0.758 0.843 0.162 0.783
BF40 0.497 0.311 0.009 0.882 0.687 0.835 0.553 0.493 0.423 0.983
BG20 0.995 0.04 0 0.462 0.995 0.981 0.28 0.794 0.327 0.613
BG30 0.971 0.027 0.004 0.882 0.324 0.432 0.984 0.695 0.503 0.289
C-1-3 0.959 0.359 0.022 0.678 0.932 0.843 0.359 0.483 0.004 0.684
C-3-0 0.555 0.22 0.07 0.864 0.675 0.99 0.582 0.7 0.047 0.964
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Table 15. Kendall tau statistics for test of trend
in total cadmium corrected for Net Delta Outflow.

Site N S Os tau p
BA10 5 0 4.082 0 1
BA20 10 15 11.18 0.333 0.21
BA30 10 11 11.18 0.244 0.371
BA40 10 7 11.18 0.156 0.592
BB15 5 0 4.082 0 1
BB30 10 13 11.18 0.289 0.283
BB70 5 -2 4.082 -0.2 0.806
BC10 10 13 11.18 0.289 0.283
BC20 10 9 11.18 0.2 0.474
BC30 10 11 11.18 0.244 0.371
BC41 8 2 8.083 0.071 0.902
BC60 6 1 5.323 0.067 1
BD15 5 2 4.082 0.2 0.806
BD20 10 17 11.18 0.378 0.152
BD30 9 14 9.592 0.389 0.175
BD40 10 29 11.18 0.644 0.012
BD50 10 27 11.18 0.6 0.02
BF10 10 7 11.18 0.156 0.592
BF20 10 13 11.18 0.289 0.283
BF40 7 3 6.658 0.143 0.764
BG20 10 1 11.18 0.022 1
BG30 10 -15 11.18 -0.333 0.21
C-1-3 5 -4 4.082 -04 0.462
C-3-0 5 2 4.082 0.2 0.806

Table 16. Number of sampling events
per calendar year quarter.

Year Q
1989
1990
1991
1992

1993
1994
1995
1996

Q Q Q
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APPENDIX B
FIGURES
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Figure 1. San Francisco Bay and the Sacramento-San Joaquin Delta, showing the
sampling sites for trace elements used in the RMP and prior pilot studies.
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Figure 2. RMP station clusters for each sampling event based on all trace elements.
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Figure 3. RMP station clusters for each trace element based on all sampling events
7-15.
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Figure 4. Total trace element distributions mapped in UTM coordinates. Each map
corresponds to a single element and single RMP sampling event. The area of each square is
proportional to the concentration, expressed as a fraction of the largest value found in each

sampling event.
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Figure 5. Moran scatterplots for each trace element during sampling event 13. The
dashed line is the linear regression line. The solid line is the least trimmed squares
regression line. Three points are designated by their station codes rather than by circles.
These have the three most negative residuals with respect to the least trimmed squares line.
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Figure 6. Time series of trace element totals for RMP stations during 1991-1995.



CONCENTRATION (ng/L)

Total Silver

FTTTrrrrnl
°885

1 O O

120

o8& 8

120

TTTTTT]
=

120

TTTTTTI

Y | D .r1 I.II.I.J .Il I 1._..]..].. .I.J-.-.l{l-I.LLl.I

1



CONCENTRATION (ug/L)

Total Arsenic
1881 1894 1991 1994

= MW A
11

N rlH,l‘ . J\lj\h\ ,M‘,IM;IL

1991 1994 1981 1994
YEAR



CONCENTRATION (ng/L)

Total Cadmium
1931 1994 1991 1994

LI (N S T
nnim L}




CONCENTRATION {(ug/L)
= P W
= R-R=-K-]

Total Chromium
1991 1994 1891 1994

""""L]]" "'

e AR R
TR, o

1 .‘._Jh..‘

L

11 ]

— 40
30
— 20
— 10

[ 1 1 1
-l' -..-l.

13 i Ll.ll ............ J.l...JI.J...I weli | el bl
1 1

1

1991 1994 1991 1994
YEAR



CONCENTRATION (ug/L)

Total Copper
1991 1994 1991 1994

n
|

; ”lll UITY [ Ty [ I
[ | | b | L LI

1 I I
1981 1994 1991 1994
YEAR



Total Nickel

1991 1994 1991 1994

=
2
<
o
é 3{} ] i
5 20 - -
© 10

0

30

20

10 -

|I|‘ L .
0 b | i ...I..Ll.l...ill.l.lll.l. " I|||||IlJ__|l| - |I |I|||I|J__
1991 1994 1991 1994

YEAR



6000
4000
2000

NTRATION (ug/L)

Z 6000
© 4000
8 2000

c

6000
4000
2000

1991

Total Lead
1994

1991

1994

L1100l

"ITT:T;J!J:"

R B i 5 e i i

1

6000
4000
2000

Frrrrl

6000
4000

2000
Al

6000
- 4000
- 2000

FTTTTTT




L= T 1 I

CONCENTRATION {ug/L)

= = k3 D2

D = ha L

Total Selenium
1891 1994 1991 1994

|
I
S = kW

I U Wt JOPLT 0 1 I T 1 A Y1 N Y]
1T | I | I O L 17T 1T 1T 1
1991 1994 1991 1994

YEAR



Total Zinc
1991 1994 1991 1994

GONCENTRATION {ug/L)




CONCENTRATION (ug/L)

Total Zinc
1991 1994 1991 1994

o 8 8
L1 1

1991 1994 1991 1994
YEAR



Total Zinc

g8 9 + 2

9

0b 89v2c(C 9
{1/6n) NOILVHLINIONOD




Figure 7. Trends in trace element totals during 1991-1995. Upright triangles represent
uptrends and inverted triangles represent downtrends. Weaker trends (p>0.1) are designated
by small triangles, stronger trends (p<0.1) by large triangles.
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Figure 8. Total cadmium vs. Net Delta Outflow. The straight line in each panel is a
linear regression fit.
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Figure 9. Time series of total cadmium after removing the effects of Net Delta
Outflow (NDO) through linear regression.
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