Recommended Methods for Outlier Detection
and
Calculations of Tolerance Intervals and Percentiles —
Application to RMP data
for

Mercury-, PCBs-, and PAH-contaminated Sediments

Final Report

May 27th, 2011

Prepared for:
Regional Monitoring Program for Water Quality in San Francisco Bay, Oakland

CA

Prepared by:

Dr. Don L. Stevens, Jr. Principal Statistician
Stevens Environmental Statistics, LLC
6200 W. Starr Road
Wasilla, AK 99654

Introduction

This report presents results of a review of existing methods for outlier detection and for
calculation of percentiles and tolerance intervals. Based on the review, a simple method of
outlier detection that could be applied annually as new data becomes available is recommended
along with a recommendation for a method for calculating tolerance intervals for population
percentiles. The recommended methods are applied to RMP probability data collected in the San
Francisco Estuary from 2002 through 2009 for Hg, PCB, and PAH concentrations.

Outlier detection

There is a long history in statistics of attempts to identify outliers, which are in some sense data
points that are unusually high or low. Barnett and Lewis (1994) define an outlier in a set of data
as “an observation (or subset of observations) which appears to be inconsistent with the
remainder of that set of data. This captures the intuitive notion, but does not provide a
constructive pathway. Hawkins (1980) defined outliers as data points which are generated by a
different distribution than the bulk observations. Hawkins definition suggests something like
using a mixture distribution to separate the data into one or more distributions, or, if outliers are
few relative to the number of data points, to fit the “bulk” distribution with a robust/resistant
estimation procedure, and then determine which points do not conform to the bulk distribution.
This approach assumes that a suitable parametric distribution can be determined.

Previous work attempted to separate some contaminant distributions into “ambient” and
“impacted” components using a mixture distribution approach. Unfortunately, the distributions
did not resolve into something that could clearly be interpreted as an ambient and an impacted
distribution. Furthermore, none of the data sets evaluated (Hg, PCB, and PAH) exhibited
distributions that could be reasonably modeled by parametric methods. Most outlier detection
methods either rely on a parametric distribution (e.g., assume underlying normality) or rely on
visual inspection and interpretation of graphical representations (e.g., Tukey’s box plots (Tukey,
1997)). Inasmuch as the aim of the current exercise is to identify a procedure that can be applied
to future data sets with minimal human intervention, the more common outlier detection methods
do not seem suitable.

Last & Kandel (2001) proposed using an approach based on fuzzy set theory (Zadeh, 1985).
Their approach identifies data points that are separated from the main body of the data. It seems
particularly suited for the present application, where we wish to identify and remove unusually
large values. Their method uses a measure of conformity that compares the distance between a
point and its next smaller neighbor to the average distance between next m smaller points. This
is essentially a comparison of local point densities that identifies abrupt changes in point density.

The measure of conformity for value v, used by Last and Kandel is
2

p-:
j 1-I—E'Xp(ﬁm{vj_vj_i})

(o1 = Vjmm-1)

where 7; is the number of times value v; occurs, and f is a user-defined parameter that controls
sensitivity. The default value of £ is set to detect a relative difference of 10, i.e., the distance
between a value and its next lower neighbor is 10 times the average distance between the next
lower m values. The parameter m should be set so that a reasonably stable average density is
obtained. With the data sets in hand, I set m to include 2.5% of the data or at least 12 points. A
point is deemed to be non-conforming if p is small. Here I used the criterion p < 0.05.

The appendix includes R code (R Development Core Team (2009)) that implements Last &
Kandel auto detect algorithm.

Percentiles and Tolerance Intervals

A percentile is a number such that a specified proportion of the population has values equal to or
less than that number. As with outlier detection, there are both parametric and non-parametric
methods to estimate percentiles. Because the contaminant concentrations are not easily fit with a
parametric model, non-parametric methods are preferable. The simplest non-parametric
estimator of a percentile is simply to sort the data in ascending order, calculate an index for the
100j

j”' order point given by = N , and take the first point with an index exceeding the target
percentile as the estimate.

The above procedure works so long as the data can be considered a simple random sample from
the population, but does not take into account weights that result from more complex survey
designs. The procedure implemented by the USEPA’s EMAP draws on an estimate of the
cumulative distribution function to estimate percentiles (Diaz-Ramos, et al.,1996). The CDF is
essentially a complete collection of percentiles, with a percentile being calculated for each
unique data value. Specific percentiles are calculated by interpolation if they do not happen to
coincide with a data value. This is the recommended procedure, because the CDF as calculated
by the R survey analysis package spsurvey (Kincaid, et al., 2010) is appropriate for complex
survey designs as well as simple random sampling.

A tolerance interval is essentially a confidence interval on a specified proportion of a population
distribution. An upper tolerance limit is a number such that there is a specified level of
confidence that a specified proportion of the population has values at or below that number.
Figure 1 illustrates the distinction between the confidence interval around a cumulative
distribution function and tolerance intervals using the data for Hg concentration. The CDF gives
the proportion of the population with Hg concentrations less than or equal to the values on the x-
axis. The 95% confidence limits give bounds on that estimated proportion. A 95% tolerance
limit, on the other hand, is a concentration such that some specified proportion of the population
is less than or equal to that concentration with 95% confidence. For example, we can estimate a
95% tolerance limit on the 90™ percentile of Hg concentration by drawing a line parallel to the x-
axis at the level where the CDF = 0.9, finding the intersection of that line with the lower 95%
confidence limit on the CDF, and then dropping down to the corresponding Hg concentration (in
this case, 0.340). This is essentially the manner in which the USEPA’s EMAP estimates
confidence limits on percentiles. It is the method implemented in the R survey analysis package
spsurvey (Kincaid, et al., 2010). Because it is based on spsurvey’s estimate of the CDF and
confidence limits, it is appropriate for complex as well as simple survey designs.

There are several other non-parametric methods available for estimating tolerance intervals
(Hahn and Meeker, 1991; Wald, 19143; Wilks, 1941). These are based on the binomial
distribution and assume simple random sampling. They also require large data sets to work well,
especially for high confidence on extreme percentiles. Although I recommend EMAP’s
procedure, the Hahn & Meeker estimator (implemented in the R package tolerance (Young,
2009)) was also calculated for comparison. For the most part, the two estimators were in good
agreement; differences showed up primarily for high confidence or high percentile tolerance
limits. Only the results for the spsurvey method are presented here.

Results
Outlier Results

One or more outliers were identified in each of the three contaminant data sets. Three outliers
were identified for Hg: site codes (CB016S), (SPB018S), and (CB044S) with values 0.610, 0.780
and 0.942, respectively. Figure 2 is a histogram of the Hg distribution with the outliers
identified. Three outliers were identified for PCB: site codes SPB018S, CB034S, and SB011S
with values 25.1293, 26.5817, and 29.8293, respectively. Figure 3 is a histogram of the PCB
distribution with the outliers identified. Only one outlier was identified for PAH: site code
CB044S with 43046.9. Figure 4 is a histogram of the PAH distribution with the outlier
identified.

Percentiles & Tolerance Interval Results

All outliers were removed before this part of the analysis. Also, all non-detect values were
replaced with the detection limit. Because the focus is on the upper percentiles, the actual value
used for the non-detects is immaterial: it has no effect on upper percentile calculation so long as
it is small.

Percentiles were calculated using the interpolation algorithm from spsurvey. Tolerance intervals
were calculated using spsurvey methodology. That is, the tolerance intervals were based on cdf’s
and confidence limits calculated using survey weights and the variance estimator developed for
Generalized Random Tessellation Stratified (GRTS) designs (Stevens & Olsen, 2003). Results
for multiple percentiles and tolerance levels are presented in Tables 1 through 3. Figures 5
through 7 are histograms with outliers removed, and the with the median and 90% tolerance limit
on the 90™ percentile identified. (NB: These histograms are based a counts, not survey weights,
so they are not an unbiased representation of the population distribution. They are provided to
illustrate where the tolerance limit lies relative to the sample data. The medians and tolerance
limits were estimated using the survey weights.)

Table 1: Upper tolerance limits for Hg

Percentile Percentile Confidence Level

Level Estimate 80 &5 90 95 99
80 0.300 0.301 0.302 0.302 0.305 0.310
85 0.309 0.313 0314 0.317 0.321 0.328
90 0.328 0.332 0.333 0.334 0.340 0.343
95 0.347 0.351 0.351 0.352 0.357 0.364
99 0.440 0.468 0.470 0.472 0.474 0.478
Table 2: Upper tolerance limits for PCB

Percentile Percentile Confidence Level
Level Estimate 80 &5 90 95 99
80 9.6 10.0 10.2 10.2 10.3 11.0
85 10.7 11.6 11.8 12.0 12.1 12.4
90 12.4 13.7 14.0 15.7 15.8 15.9
95 16.6 18.0 18.1 18.2 18.3 18.5
99 19.0 19.4 19.4 19.5 19.5 19.6
Table 3: Upper tolerance limits for PAH
Percentile Percentile Confidence Level

Level Estimate 80 85 90 95 99
80 3488 3517 3517 3531 3540 3815
85 3828 3904 3963 4072 4182 4357
90 4476 4556 4690 4847 5062 5276
95 6203 6483 6643 6837 7742 9155
99 12461 16594 16822 17057 17332 17695

References

Diaz-Ramos, S., D.L. Stevens, Jr., and A.R. Olsen. (1996). EMAP Statistical Methods Manual.
EPA/620/R-96/XXX. Corvallis, OR: U.S. Environmental Protection Agency, Office of
Research and Development, National Health Effects and Environmental Research
Laboratory, Western Ecology Division.

Hahn, G. J. and Meeker, W. Q. (1991), Statistical Intervals: A Guide for Practitioners, Wiley-
Interscience.

Kincaid, Tom, Tony Olsen with contributions from Don Stevens, Christian Platt, Denis White
and Richard Remington (2010). spsurvey: Spatial Survey Design and Analysis. R
package version 2.1.2. http://www.epa.gov/nheerl/arm/

Last, A, and M. Kandel (2001) Automated Detection of Outliers in Real-World Data. Proc. of
the Second International Conference on Intelligent Technologies, pp292-301

R Development Core Team (2009). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN3-900051-07-0, URL
http://www.R-project.org.

Stevens, Jr., D.L., and A.R. Olsen (2003). Variance estimation for spatially balanced samples

of environmental resources. Environmetrics 14: 593-610

Tukey J (1977). Exploratory Data Analysis, Reading, MA: Addison-Wesley.

USEPA (1990) Statistical Analysis of Groundwater Monitoring Data At RCRA Facilities:
Unified Guidance. USEPA Office of Resource Conservation and Recovery EPA 530/R-
09-007

Wald, A. (1943), An Extension of Wilks' Method for Setting Tolerance Limits, The Annals of
Mathematical Statistics, 14, 45-55.

Wilks, S. S. (1941), Determination of Sample Sizes for Setting Tolerance Limits, The Annals of
Mathematical Statistics, 12, 91-96.

Young, D.D. (2009). tolerance: Functions for calculating tolerance intervals.. R package version
0.1.0. http://CRAN.R-project.org/package=tolerance

Zadeh, L.A. (1985). Syllogistic Reasoning in Fuzzy Logic and its Application to Usuality and
Reasoning with Dispositions. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-15, 6, 754-763.

CDF

1.0

0.8

0.6

0.4

0.2

0.0

Figure 1: CDF of Hg with Lower 95% Confidence Limit

e

95% Upper Tolerance Limit on 90th percentile =
CDF=0.9 ’

£ 0.340

0.0 0.1 0.2 0.3 04

Hg concentration

0.5

Frequency

40

30

20

10

Figure 2: Histogram of Hg with outliers identified

i

identified outliers

0.0

0.2

| |
04 0.6

Hg Concentration

0.8

1.0

Frequency

25

20

15

10

Figure 3: Histogram of PCB with outliers identified

identified outliers

| | | | | |
5 10 15 20 25 30

PCB Concentration

Frequency

100

80

60

40

20

Figure 4: Histogram of PAH with outlier identified

identified outlier

—'_’_‘—v—v—\l—lﬂ e T s |

I I I I
10000 20000 30000 40000

PAH Concentration

Frequency

40

30

20

10

Figure 5: Histogram of Hg with outliers removed

90% TL on 90th PC=0.334

Median=0.245

0.0

| | | |
0.1 0.2 0.3 04

Hg Concentration
Median and 90% Tolerance Limit on 90th Percentile are identified

Frequency

25

20

15

10

Figure 6: Histogram of PCB with outliers removed

Median=6 90% TL on 90th PC=15.7

0 5 10 15

PCB Concentration
Median and 90% Tolerance Limit on 90th Percentile are identified

20

Frequency

100

80

60

40

20

Figure 7: Histogram of pah with outliers removed

Median= 1510

90% TL on 90th PC= 4847

I I I I
5000 10000 15000 20000

pah Concentration
Median and 90% Tolerance Limit on 90th Percentile are identified

Appendix: R code for outlier detection & tolerance interval calculation

A data file must be in the directory in which R was opened. Data can be downloaded from the
Web Query Tool: http://www.sfei.org/tools/wqt.

Select the following options from the Web Query Tool interface

Search Parameters:

Test Material:

Sediment

Program/Project:

Regional Monitoring Program
Start Year:

2002

End Year:

2009

Then either:

Parameter Type:

Trace Elements Polychlorinated Biphenyls Polycyclic Aromatic
(PCB) Hydrocarbons (PAH)

Parameter:

Mercury | Sum of 40 PCBs (SFEI) | Sum of PAHs (SFEI)

Save the file as “Hg_Sediment 2002-2009 out.xls”, or a similar name, in the same directory as
the source code. Open to the sheet “Results — flat file” and save the worksheet as a “.csv” by the
same name. R can read Excel files directly, but it’s easier to first save as a .csv file.

The lines below constitute a script in R — they can be copied directly into the command line
interface. Beforehand, the custom functions must be saved in the working directory with the file
names “auto_detect outlier.R” and “albers proj.R”, as indicated. The packages spsurvey and
tolerance (and any packages they are dependent on) must be installed as well. Parameters above
the “Do Not Adjust Code Below this Line” mark should be adjusted as necessary.

HiHHHHHH R R code below H#HHHIHHHIHHHIHHIHHIHH IR

Script: Calculation of Ambient Sediment Thresholds

based on code from Don Stevens' report: "Recommended Methods for Outlier
Detection and Calculations of Tolerance Intervals and Percentiles -

Application to RMP data for Mercury-, PCBs-, and PAH-contaminated Sediments"

created May 2011
revised 6/6/2011

load packages needed for the custom functions
require("spsurvey", quietly=TRUE)
require("tolerance", quietly=TRUE)

set working directory
setwd('S:\\RMP Documents\\Ambient Sediment Conditions discussion\\thresholdCalculation')

load custom functions
source('auto_detect_outlier.R")
source(‘albers_proj.R")

load in data
sed.data <- read.csv("Hg_Sediment 2002-2009 out.csv")
The value of the contaminant concentration is in the field named Result

set user parameters
analyte name <- 'Hg' # options = 'Hg' or 'PCB' or 'PAH'

set the percentile levels and the confidence intervals
tolval <- ¢(80, 85, 90, 95, 99)
conf <- ¢(80, 85, 90, 95, 99)

#---- Do Not Adjust Code Below this Line------ #
Set analyte names from data sets based on user parameter
if (analyte name == "Hg") {
analyte = 'Mercury'
} else if (analyte name == "PCB") {
analyte = ¢("Sum of PCBs (SFEI)', 'Sum of 40 PCBs (SFEI)")
Sum of 209 PCBs should not be included
prior to 2009, all sums of PCBs were sum of 40 PCBs
} else if (analyte name == "PAH") {
analyte = 'Sum of PAHs (SFEI)'
}else {

}

analyte = NULL

convert results to numeric if data is not read in as "numeric"
if (!is.numeric(sed.data$Result)) {

lev <- sub(",","",levels(sed.data$Result)[as.integer(sed.data$Result)]); # take out
commas from the results

sed.data§Result <- as.numeric(lev);

}

extract year from Cruise Number
ychar <- substr(levels(sed.data$Cruise.Number)[as.integer(sed.data$Cruise.Number)], 1,4);
sed.data§Year <- as.numeric(ychar);

remove 2002 from PCB data - data is not compatible
if (analyte_ name == "PCB") {
idx <- which(sed.data§Year !="2002")
sed.data <- sed.data[idx,]

remove nontarget sample frames

tst <- sed.data$Region == 'Southern Sloughs';
sed.data <- sed.data[!tst,];

tst <- sed.data$Region == 'Rivers';

sed.data <- sed.data[!tst,];

tst <- sed.data§Region == 'Carquinez Strait';
sed.data <- sed.data[!tst,];

remove historical stations (based on B... site code)

hist <- substr(levels(sed.data$Site.Code)[as.integer(sed.data$Site.Code)],1,1);
tst <- which(hist == "B");

if (Iength(tst) != 0) sed.data <- sed.data[-tst,];

remove non-target parameters

contam <- levels(sed.data§Parameter)[as.integer(sed.data$Parameter)]
tst <- which(contam == analyte[1]| contam == analyte[2]);

sed.data <- sed.data[tst,];

find number of data points
nr <- nrow(sed.data)

define frame area for sediment in sq km
frameArea <- c('Lower South Bay'=7.642,
'South Bay'=185.171,
'Central Bay'=396.442,
'San Pablo Bay'=226.821,
'Suisun Bay'=80.357);
'Carquinez Strait'=21.289, 'Southern Sloughs'=1.733,'Rivers'=16.478);

compute the weight for each sample, based on frame area
idx.region <- match(sed.data$Region, names(frameArea))
sed.data.num <- table(sed.data$§Region)

sed.region <- match(sed.data§Region,names(sed.data.num))
sed.wt <- frameArea[idx.region]/sed.data.num[sed.region]

Convert lat/long to equal-area projection. (Albers, in this case)
clon <- -122
clat <- 38
spl <-37
sp2 <-40
sed.xy <- albxy(sed.data$§ Actual.Latitude, sed.data$Actual.Longitude,
clon = clon, clat=clat, spl = sp1, sp2 = sp2)

Find the non-detects, and replace with MDL
idx <- which(is.na(sed.data$Result))
sed.data$Result[idx]<- sed.dataSMDL[idx] # replace non detects with MDL

find the outliers
o_idx <-auto_detect outlier.fcn(x=sed.data$Result)

"o_idx" contains the indices of any points identified as outliers (or is NULL).

Now calculate cdf & spsurvey-type tolerance limits for confidence intervals and percentiles as
set above
if (lis.null(o_idx)) {
data.cdf .tol <- cdf.tol.est.fcn(sed.data$Result[-0_idx],conf=conf,
tolval = tolval, vartype = "Local",
x = sed.xy[-0_idx,1], y = sed.xy[-0_idx,2], wt = sed.wt[-0_idx])
} else {
data.cdf.tol <- cdf.tol.est.fcn(sed.data§Result,conf=conf,
tolval = tolval, vartype = "Local",
x = sed.xy[,1], y = sed.xy[,2], wt = sed.wt)

}
data.cdf <- data.cdf.tol$cdf

For reference, calculate the Hahn-Meeker tolerance limits
data.hm.tol <- matrix(0,nrow = length(tolval),ncol = length(conf) +1)
data.hm.tol[,1] <- data.cdf .tol$tol[,1,1]
pctval <- as.character(tolval/100)
dimnames(data.hm.tol) <- list(pctval,c("PCT", conf))
if (lis.null(o_idx)) {
for(j in 1:length(conf)) {
for(i in 1:length(tolval)) {
tmp <- nptol.int(sed.data$Result[-o0_idx],P=tolval[i]/100, alpha = 1-conf]j]/100,
method="HM")[[4]]
data.hm.tol[1,j+1] <- tmp
i3
} else {
for(j in 1:length(conf)) {
for(i in 1:length(tolval)) {
tmp <- nptol.int(sed.data$Result,P=tolval[i]/100, alpha = 1-conf[j]/100,
method="HM")[[4]]
data.hm.tol[1,j+1] <- tmp

i
}

data.hm.tol

This table has the percentile level in the first column, the percentile value

in the second column, and upper tolerance limits in the succeeding columns
for the confidence levels in the top row.

print out 2 significant figures for regulatory threshold

signif(cbind(data.cdf .tol$tol[,1,1],data.cdf.tol$tol[,2,]),digits =2)

round to the appropriate number of digits for easy viewing

ndig <- switch(analyte name, "Hg" = 3, "PCB" = 1, "PAH" = 0)
round(cbind(data.cdf.tolS$tol[,1,1],data.cdf.tol$tol[,2,]),ndig)

#auto_detect outlier.R

auto_detect_outlier.fcn <- function(x,m =NULL,alpha =0.05, beta = NULL, dif.detect = 10) {
detect outliers in the vector v by comparing lag 1 difference to

lag m difference

dif.detect controls sensitivity to the relative distance magnitude. Default

value of 10 detects a relative magnitude of 10, e.g., a difference that is

10 times the local average difference.

#

alpha controls the level of conformity that is deemed to be outlying. Lower
values will cause fewer values to be recognized as outliers.

default value for m is at least 12 or ceiling(length(x)*0.025),

i.e., about 2.5% of data

function returns the indices of high outliers, or NULL if none are detected

if(is.null(m)) m <- max(12, ceiling(length(x)*0.025))

if(is.null(beta)) beta <- log(2/alpha -1)/dif.detect

ord <- order(x)

sx <- x[ord]

tst <- tapply(sx, sx)

tbx <- table(x)

v<- unique(sx)

nv <- length(v)

nvl<-nv-1

nm <- nv-m

cfl <- cth <- rep(1, nv)

difl <- diff(v)

difm <- (v[-(1:(m))]-v[1:nm]) /m

cth[(m+2):nv] <- 2/(1+exp(beta*dif1[(m+1):nv1]/(tbx[(m+2):nv]*difm[-nm])))
idx <-which(cth < alpha)

if(length(idx)==0) return(NULL) else return(ord[match(min(idx):nv,tst)])

}

CDF, percentile, & tolerance interval calculation

cdf.tol.est.fcn <-function(z, conf=95,tolval=95,wt=NULL,vartype = "SRS",
zmng=NULL,x=NULL, y=NULL) {

#z vector of observed values

conf a single value or a vector of confidence levels

tolval a single value or vector of percentile levels

wt a vector of same length as z with survey weight values. The default

value NULL results in equal weighting

vartype specifies type of variance calculation. Default uses the SRS

variance estimator (see package spsurvey documentation for more details)

the alternative is "Local" which uses the local variance estimator. If

the local estimator is used, x and y coordinates must be supplied.

zrng is vector of values at which the cdf is estimated. Default uses

the sorted unique values of z

x, y are coordinates of the z observations. Only needed if vartype = "Local"

#

gets estimate of the cumulative distribution function, its standard deviation,
and 1-sided lower confidence limits.
Also estimates percentiles and upper tolerance limits
confidence limits will be estimated for all levels specified in conf
Returned value is a list with components "CDF" and "tol". CDF is a matrix
with values of the cdf and upper confidence limits; tol is a three dimensional
array row = percentile, column = tolerance limits, and sheet = confidence
#
if(vartype =="Local" & (is.null(x) | is.null(y))) {
return("x & y coordinates must be supplied for local variance estimator")
}
conf <- conf/100
tolval <- tolval/100
n <- length(z)
if(is.null(zrng)) zrng <- sort(unique(z))
m <- length(zrng)
ym <- matrix(rep(zrng, n), nrow = n, byrow = T)
zm <- matrix(rep(z, m), nrow = n)
if(is.null(wt)) wt <- rep(1, length(z))
wm <- matrix(rep(wt, m), nrow = n)
cdf <- apply(ifelse(zm <= ym, wm, 0), 2, sum)/sum(wt)
tw2 <- (sum(wt))"2
im <- ifelse(matrix(rep(z, m), nrow = n) <= matrix(rep(zrng, n), nrow = n,
byrow =T), 1, 0)
rm <- (im - matrix(rep(cdf, n), nrow = n, byrow = T)) * matrix(rep(wt, m),
nrow = n)
if (vartype == "Local") {
weight.Ist <- localmean.weight(x, y, 1/wt)
varest <- apply(rm, 2, localmean.var, weight.lIst)/tw2
} else {
varest <- n * apply(rm, 2, var) / tw2
}
sd <- sqrt(varest)
mult <- gnorm(conf)
cint <- matrix(0,nrow =m,ncol=length(mult))
for(i in 1:length(mult)) {
cint[,i] <- pmax(0,cdf - sd*mult[i])
}
CDF <- cbind(cbind(zrng, cdf, sd, cint))
dnm <- paste(100*conf, "%UCB",sep = "")
dimnames(CDF) <- list(NULL, c¢("Value", "CDF", "SD",as.vector(t(dnm))))
tol <- array(0, c(length(tolval), 2,length(conf)))
dimnames(tol) <- list(100*tolval, c("PCT","UPPER TL"),100*conf)
for (j in 1:length(conf)) {
tol[,,j] <- pctol.est.fen(cbind(zrng, cdf,cint[,j]),tolval)
}
list(cdf =CDF, tol=tol)
}

pctol.est.fcn <- function(cdfest, tolpct) {
calculates percentile & upper tolerance liimit
input is estimated cdf with upper confidence limit, and vector of percentiles
rslt <- matrix(0, nrow=length(tolpct),ncol=2)
for(iin 2:3) {
for (j in 1:length(tolpct)) {
hdx <- which(cdfest[,i] >= tolpct[j])
high <- ifelse(length(hdx) >0, min(hdx), NA)
ldx <- which(cdfest[,i] <= tolpct[j])
low <- ifelse(length(ldx) >0, max(ldx), NA)
if (is.na(high)) {
rslt[j,i-1] <- NA
} else if (is.na(low)) {
rslt[j,i-1] <- cdfest[high,1]
} else {
if (high > low)
ival <- (tolpct[j] - cdfest[low,i])/ (cdfest[high,i] - cdfest[low,i])
else ival <- 1
rslt[j,i-1] <- ival * cdfest[high,1] + (1 - ival) * cdfest[low,1]

albers proj.R

albxy <<- function(lat, Ing,sph = "Clarke1866", clon = -96, clat = 23, spl = 29.5,
sp2 =45.5)
{
if (sph == "Clarke1866") {
a<-6378206.4
b <- 6356583.8
}
else if (sph == "GRS80") {
a<-6378137
b <- 6356752.31414
}
else if (sph == "WGS84") {
a<-6378137
b <- 6356752.31424518
}
else {
stop("\nSpheroid does not match available options")
}
RADDEG <- (180/pi)
DEGRAD <- (pi/180)

ec = eccentricity = sqrt(1-(b/a)*2)
#

ec <- sqrt(1-(b/a)"2)

dgrd <- pi/180.

phO <- clat * dgrd

phl <-spl * dgrd

ph2 <- sp2 * dgrd

10 <- clon * dgrd

q0 <- alb.que(ph0,ec)

ql <-alb.que(phl,ec)

g2 <- alb.que(ph2,ec)

m0 <- alb.em(phO0,ec)

ml <- alb.em(phl,ec)

m2 <- alb.em(ph2,ec)

lat <- lat * dgrd

Ing <- Ing * dgrd

q <- alb.que(lat, ec)

m <- alb.em(lat, ec)

n <- (ml"2.-m2"2.)/(q2 - ql)
cn<-ml”2.+n*ql

r0 <- (a * sqrt(cn - n * q0))/n
th <-n * (Ing -10)
r<-(a*sqrt(cn-n * q))/n

x <- 1 * sin(th)

y <-10 - r * cos(th)

cbind(x, y)

alb.em <- function(z, ec)

{
cos(z)/sqrt(1. - (ec * sin(z))"2.)
}
alb.que <- function(z, ec)
{
snlt <- sin(z)
esnlt <- ec * snlt
(1. -ec”2.) * (snlt/(1. - esnlt"2.) - logb((1. - esnlt)/(1. + esnlt))/(2. * ec))
}

albersgeod <<-
function (x, y, sph = "Clarke1866", clon = -96, clat = 23, spl = 29.5,
sp2 =45.5)
{
if (sph == "Clarke1866") {
a<-6378206.4
b <- 6356583.8
h
else if (sph == "GRS80") {
a<-6378137
b <- 6356752.31414036
h
else if (sph == "WGS84") {
a<- 6378137
b <- 6356752.31424518
h
else {
stop("\nSpheroid does not match available options")
h
RADDEG <- (180/pi)
DEGRAD <- (pi/180)
clat <- clat * DEGRAD
clon <- clon * DEGRAD
spl <-spl * DEGRAD
sp2 <- sp2 * DEGRAD
e2<-1-(b*Db)/(a*a)
ed <-e2*e2
e6<-e4 *e2
e <- sqrt(e2)
tl <-1-¢2
t2<-1/(2 *e)
sinlat <- sin(clat)
t3 <- 1 - €2 * sinlat * sinlat
q0 <- 2 * log((1 - e * sinlat)/(1 + e * sinlat))

g0 <-t1 * (sinlat/t3 - q0)

sinlat <- sin(sp1)

t3 <- 1 -e2 * sinlat * sinlat

ql <-t2 * log((1 - e * sinlat)/(1 + e * sinlat))

ql <-tl * (sinlat/t3 - q1)

ml <- cos(spl)/sqrt(t3)

sinlat <- sin(sp2)

t3 <- 1 - e2 * sinlat * sinlat

g2 <-t2 * log((1 - e * sinlat)/(1 + e * sinlat))

g2 <-tl * (sinlat/t3 - q2)

m2 <- cos(sp2)/sqrt(t3)

n<-(ml * ml - m2 * m2)/(q2 - ql)

C<-ml *ml +n*ql

rho0 <- a * sqrt(C - n * q0)/n

rho <- sqrt(x * x + (thoO - y) * (thoO - y))

theta <- atan(x/(rhoO - y))

q <- (C - (tho * tho * n * n)/(a * a))/n

lon <- clon + theta/n

lat <- asin(qg/(1 - (t1/(2 * e)) * log((1 - e)/(1 + e))))
s2 <-sin(2 * lat) * (e2/3 + 31 * e4/180 + 517 * €6/5040)
s4 <-sin(4 * lat) * (23 * e4/360 + 251 * e6/3780)
s6 <-sin(6 * lat) * (761 * €6/45360)

lat <- lat +s2 + s4 + s6

data.frame(lon = lon * RADDEG, lat = lat * RADDEG)

