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Executive Summary

The Regional Monitoring Program for Water Quality in San Francisco Bay (RMWith
guidance fram its Small Tributaries Loading Strategy (STLS) Tearhas been conducting
small tributary loading studies at several sites in the Bay Area since 2003. A current
priority for the STLS isdeveloping a strategy for measuring trends in pollutant loading
from small tributaries to the Bay.

This technical report presentsthe work to develop a statistical model for trends in loads of
polychlorinated biphenyls (PCBs)and estimate the power for proposed monitoring
designsas a basis fodetecting trends for the Guadalupe River watershed%an Jose,
California). The statistical approachbuilds upon the turbidity surrogate methodology that
has been employed irthe STLSsince 2003. A novel, twestage statistical modeling
approachwas used to incorporatethe signficant turbidity -PCB relationshigs that exist and
evaluateclimatic, seasonal, and intetannual factors as additional potential drivers of PCB
loads.The longestrunning time series of tributary monitoring by the STLSn the
Guadalupe Rivemwas selectedas the case study for developing and tesig the statistical
approach. As a result of thiseffort, amultiple linear regression model fordetecting trends
in PCB loads in th&suadalupe River wadeveloped

There are two main findings fromthe modeling efort. Firstly, the statistical modelsdid not
find a significant linear inter-annualtrend in current PCBloadsfor the period 2003-2014
after accounting for climatic variability. Secondly simulations to estimate the power for
detecting significant trendsin PCBloads,employing agrab-based desigrusing the
proposed statistical methodswould have sufficient (> 80%) power to detect25% or
greater trends over a 20-year period. A parallel analysis to simulatea composite-based
sampling designindicated that this approachwas less sensitiveo trends, and could only
detect large trends (>75%) over 20 years Overall, the simulations indicated that the
higher sample size and relatively low standard error of load estimates of the graiased
methodology holds promise for detecting trends of management interest in the future.
Finally, acost estimate forgrabs and compositedesigns was included as an appendix using
the following assumptions:grab sampling in10 years over a 20 year perioavith 4 storm
events/year and 4 grab samples/storm composite sampling in12 years over a 20 year
period with 2 storm eventgyear.

To date, he statistical modelsdevelopedin this project have only been parameterized for
the Guadalupe Riverwhich may be subject to refinementand testing, asuture PCB
monitorin g data are collectedn the watershed. A similar approach may also be effectivef
developedfor other tributaries , but the combination of variables used todevelopthe
models will likely be different. Therefore,the modelingtechniques developed hereould be
applied to other watershedsin the future, to determine if the approach, if not the specific
model parametersand coefficientsis generally applicable.
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Introduction

The Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), through
its SmallTributary Loading Strategy (STLS) Tearmasconductedsmall tributary loading
studies at several sitesn the BayAreasince 2003(David et al. 2009; Davis et al. 2007;
McKee et al. 2004; McKee et al. 2005; McKee and Gilbreath 2009; MeKeal. 2006; Oram
et al. 2008) The primary objective of these studies has been wetermine annualloads of
particle-associated pollutantsof concern (particularly, Hg, PCBs, and suspended
sediments).The longestrunning time seriesof loadscollected inthe RMPexists for
Guadalupe River in San Jog2003-2014; McKee et al. 2017)wherea turbidity surrogate
methodology has been employed, as it has bedemonstratedto be an appropriate and
cost-effective method for unbiased particulate loads calculatiofGrayson 1996; Wall et al.
2005). The tributary loading studies have provided valuable information for the
development of the San Francisco Bay and GuadatuRiver Hg TMDLgAustin 2006;
SFRWQCB 2006)and the MunicipalRegional Stormwater NPDES Permit (MRRPFRWQCB
2009; SFRWQCB 2015)

The San Francisco BaRegional Water Quality Control BoardWater Board) has developed
Total Maximum Daily Load(TMDL) requirements for major pathways of Hg and PCB
loading to San Francisco Baygormwater load allocationsare particularly stringent,
allowing for annual discharge o082 kg of Hg and 2 kg of PCBsith the objective of
improving water quality in the Bay to desirable standards in 20 yearsThesetargets
represent estimated reductions of 50% and 90%rom the present load estimates o1.60 kg
of Hg and 20 kg of PCBs, respectively.

To meet these goalsthe TMDLreports and the MRP call for improve loads information to
answer four key management questions:
1. Identify which San Francisco Bajributaries contribute most to impairment from
pollutants of concern(PCBs, Hg, suspended sediments)
2. Quantify annual loads or concentrations of pollutants of concern from tributaries to
the Bay,
3. Quantify the decadaiscale loading or concentration trends of pollutants of concern
from small tributaries to the Bay, and
4. Quantify the projected impacts of management actian(including control measures)
on tributaries and identify where these management actions should be
implemented to have the greatest beneficial impact.

A current priority for the STLS is developing a strategfor measuring trends in pollutant
loading from small tributaries to the Bay.STLSmonitoring data have demonstrateda high-
level of precision for quantifying annual loads However, recent analyses conducted to
evaluateintra- and inter-annual variability, suggestedan apparent lackof power for
detecting trends,unlessunrealistic sampling effort is performed (Melwani 2016). Upon
detailed review of theseresults, the STLS Team concludedtie apparent lack of power
might not be simply due to insufficient samping effort or the consequenceof the sampling
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approaches usedVariability due to physical climatic processesffecting inter-annual
patterns in loadsneeds to be examined

In this study, a statistical modeling procedure was developed tdest whether the temporal
pattern in loads of asediment-associatedpollutant of concern(i.e., PCBs)may beestimated
by incorporating climatic surrogates for variousfluvial processesin combination with
measured turbidity. The basis for includingclimatic processesinto a statistical modeling
framework wasto improve the predictive power for annual loads estimation However,
employing such an approach for detectingy ends inloads hasnot previously been
investigated for PCBs omther particle-associated contaminants Therefore this report
describes anew approach totesting for trends in small tributary loads, and subsequently
employs power analysesto examinesampling designs that coulde implementedin the
STLS monitoring programto collect datato support implementation of the statistical
framework. This work focusedon PCBs in theGuadalupe Riveias a case study

Methods

Background

The GuadalupeRiver is located near San Jose, the largest city in the San Francisco Bay Area.
Its watershed is thefourth largest in the Bay Area, representingbout 500 kne. A station in
the lower watershed has been monitored with fundingoy the RMP andSanta Clara Valley
Urban Runoff Pollution Prevention Program SCVURPRIn collaboration with the USGS
(station number 11169025) since October 2002 The stationis located upstream from tidal
influence, but resides downstream from five main reservoirs, the City of San Jose, #mel
majority of flood control channels.The continuous flowing area downstream from
reservoirs is estimated to be236 km2, of which approximately 80% is urbanized landscape.
The typical flood hydrograph produced by heavy rainfalWill pass through the watershed
over a period of~ 12-24 hours, but larger and later seasor(February z April) floods may
last for several days.

Data Used

Eight years of urban runoff datacollectedfrom the GuadalupeRiver during a 12-year span
(2003-2014) were statistically analyzed in thisproject. The eightwater years (WY, October
1-September 30 spanneda range in climatic conditionsand thus a range in wet weather
discharge and pollutant concentrations Four WYs during the period were not monitored:
2007-2009, and 2011 Data collectedduring the 12-year spanhasshown that sediment
loads are almost exclusively transported during high flow events, and not during basiow.
The peakdischarge during this periodwas 6071 cfsin WY 2003 In comparison,during
WYs2005 and 2012-2014, themaximum dischargedid not exceed 1000 cfsUnder base
flow conditions, peak discharge was usually under 500 cfs.

Over the course of the eight years, continuous monitoring of turbidity and discharge was

performed, in addition to the manualcollection and analysisof grab samples forpollutant
and suspended sediment concentrations at several times during the course of storms.
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These data were the basis for the statistical modeling procedures that follow. Further
descriptive summaries ofthesedata have been described previousl{Melwani 2016).

Statistical Modeling Approach

Three key statistical analysis steps weremployedto develop and test a statistical model
for trend analysisin the Guadalupe River watershedAll statistical and graphical analyses
were conducted in R Studio (running R v. 3.3)1The following section descriles the details
of each step in theanalysis process

Step 1

A generalized linear modeling approach was used to examine variation matural log PCB
concentrations. Several iterations of the model evaluation process were conducted test
the climatic and temporalvariables that provided the most robust predictions.Forty-four
linear models consisting of 26 predictor ariables were examinedTable 1 summarizeghe
general types of predictorsand parametersconsidered It should be noted that tke initial
list of predictor variables tested was more extensivéo test support for varying
antecedence and rainfall lag timesand methods for incorporating antecedence patterns
based on best professional judgment by the STLS Trends Team (Appendix B)efootnote
to Table 1 specifies the final set ahodel parameters employedin the modelselection
framework.

The generalequation of the regressionmodel was:
In(PCBs) = Bo+BuIn(Turbidity) + B2X +BsTi+¢

Where,In(PCBs) is PCB concentratiom natural log units, Bo 7 Bz are fitted coefficients of
the model, In(Turbidity ) is turbidity in natural log units, X values areadditional raw or
transformed predictor variables, T valuesare time variablesrepresenting month
(categorical), seasor(categorical), and/or water year (continuous), andUis the
unexplained variation (residual error) .

Model parameters were estimatedy least squaresmultiple regressionfollowing a
Maximum Likelihood approach. In all candidate modeldurbidity was treated as the
primary continuous predictor variable in the default modelz Model 1. In examining
subsequent setf models, the analysissought toincorporate factors related todischarge,
rainfall patterns, and hysteresis signalsof the watershed. All candidate models were
evaluated independently Both linear andpolynomial functions were consideredas were
the interaction betweenpredictor variables overwater year. Temporal trend was
evaluated using water year (centeed on the mean of the datasetRainfall variableswith
values of< 0.026were substituted with 0.026to facilitate logarithmic transformation.
3AT AAGET 1T 1 AwsmmAde Badel AnGhe AICd statfstic, the AICc weights,
statistical significance of model terms, anthe minimum number of significant terms.

Following selection ofthe top model(s), dagnostic testswere performed onthe model

residual values (i.e., theunexplained variancg. Tests includedchecking forparametric
assumptions of normality (Shapiro-Wilk test) and homogeneity of variancgGoldfeld-
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Quandt test). Graphicalassesmentsof patterns in residuak were conducted to search for
violations of independenceplotted againstpredicted values,covariates(e.g, dischargeand
SS@, andtemporal variables (i.e, month, water year). To ensure that all systematic
temporal variability was captured in this model, linear regression of residuals against
water year (centered on the mean) and month was performed. If any systematic temporal
variability remain ed unexplainedat this stage it would invalidate the subsequent trend
analysisconducted on predictions from tre model. Summary statistics of the models
included evaluation of adjusted and predictive Rvalues and the PRESS statistic. The
predictive R2 and PRESS statistics a@oss validation measuresommonly used to gauge
the quality of models with regards to making predictions.Due to the complexityof
statistical testing of time series with irregularly sampleddata, autocorrelation bias could
not be assessedvith these data.

The last set of analyses texamine the concentrdéion model outputs was to conducttwo
cross-validation (CV)experiments. Cross validationis aroutine model validation technique
for assessing howwell the results of a statistical analysis will generalize to an independent
data set.The first method usedk-fold CV, where all the samplesiere randomly partitioned
into ®3sample sets (referral to as folds) ofapproximately equalsize. Subsequently, the
selected model wa fit using all the samples except the first subset and the prediction error
of the modd calculated against the helebut samples. This procedure was repeated for all
sample sets and the model performance calculateds themeanerror among the different
sets Secondly the Leave One-Out CV methodwas employed due taconcerns that limited
sample sizegnay bias the kfold method. In this case, the selected model was fit using all
the samples except a single sample, and the prediction error of the model calculated in a
similar fashion as described above

Step 2

The second stepn the analytical procedure was to apply the concentration model from
Step 1 to dong-term continuous record of turbidity and precipitation datato estimate
storm event loads In the case of Guadalupe River, this consisted1d-min observations
spanning October 2002 to April 2014.

Toidentify the datareflecting storm events, the presence oftorms was assessethased on
flow and precipitation criteria. All selectedstorm events required a peak flow of at least
500 cfs. The start of an event was defined blpiv rising above 150cfs (or cumulative
POAAEDEOAOGEI T €n8pd E/&E dehadtheehdby i dropping A O
below 150 cfs, or no rainfall at either CSJ or LP stations for 2 and 7 hoursspectively
(enough time for surface runoff fromeither area to reach the monitored station) For the
purposes of this analysis, flow that did not meet these criteria was deemed baigaw.

Following the storm slection criteria, predicted PCB concentriions and their respective
standard errors comprising each set oflaggedstorms were converted to instantaneous
loads. As thepredictions were generated on anatural log-scale, both the predicted values
and the standard errors were backiransformed for the loads calculation The back
transformation included a bias correctionfactor (BCF)following the method of Newman
(1993). Specifically, the residuals of the selected model were useddalculatethe mean
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square-error (MSE), and subsequently the BCF = MSE/Phe re-transformed valueswere

then converted to loadsby multiplying concentration by discharge andthe instantaneous

loads sunmmed for all predictions comprising aneventO1T AAOA Ol E1sd®ve@iyOAT O 11
five storms were identified through this method, and reflect the data employed in the trend

model analysis in Step 3.

Two calculations wereperformed to propagatethe standard error s generatedfrom the
concentration predictionsinto the event load derivation. First, thestandard errorsin
predicted concentrationswas addedto the error in discharge measurementgassumed to
equal 10%) to determine the error in nstantaneous PCB loads, according the Gimple
rule of product and ratiosofrom Kirchner (2001):

R ORBRGRCR

Next, the instantaneous loacrror estimateswere summedfor all estimates comprising the
same stormto derive the error in event loads following the Gimple rule for sumssfrom
Kirchner (2001):

;= y"l{:s;]z +(5,, }' +{su_ J’ +(s. )y +

In the following step, the PCBeventloads resulting from the procedure abovewere usedas
the dependent variable inthe statistical trend test. Both the event loads and corresponding
standard errors werethen employed inthe power analysisprocedure that followed.

Step 3

Thethird step inthe modeling procedure involved testing support for a suite of regression
models that best describe the relationship between PCBvent loads over time(referred to
as the trends model) Here, the goal of the model testing was to determine thagnificance
of inter-annualtrendsin event loads after accouring for predictor variables associated
with discharge and other sources oéventvariability (e.g., seasoality). Variables
considered for the development of the trends model are listeoh Table 5. Notably, turbidity
and dischargewere discounted from considerationin this step,due toconcerns abouttheir
utility in models applied tofuture years, as they may be response variables directly
impacted by management actions (e.g., reductions in sediment load or peak discharge
through BMPs). Similar to Step 1 the evaluation of models followed a Maximum Likelihood
Approach, with the AIC statistic, AICc weightsstatistical significanceand minimum
number of parameters forming the basis for model selection.

The generalequation of theregressionmodel was:
|n(P(BLoads) = Ao+ Al n(X) +ATi+e

Where, INn(PCBoass) is PCB event load imatural log units, A z A are fitted coefficients of
the model, X values are alternative raw or transformed predictor variables, Tvaluesare
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time variables representingmonth (categorical), season(categorical), and/or water year
(continuous), and Uis the unexplained variation(residual error).

For the model development and testing, theneanestimate of PCB loads for each stormas
the dependent variableusedin the models. Forselectedmodels, gatistical and graphical
residual analysisand cross validation experiments (k-fold and LOOCV)o asseserrors in
the modelwas performedusing the same general methods described for Step 1

Composite Sampling Strategy

A key assumptionof the modeling frameworkdescribedabove, is that a grab-based

methodology will be used tocharacterize loadsin the future, and high-resolution flow and

turbidity data are available. To evaluate other sampling options aparallel analysis was

performed to simulate an alternative sampling strategynvolving the collection ofevent

composite samples. However,ascomposite samples have yet to be collectad the

Guadalupe Rivera simulation approach was employed®i CAT AOA O AmpbstteUT OE A OE /
loadsfor use in a trend model evaluation The details of tke analysisto generate syrihetic

loadsare described in Appendix F in this report.

Development of acomposite-based trend model took thesame general formasthe grab-
basedload regressbn model described previouslyin Step 3. Here, the dependent variable
was loads estimated from synthetic composites by Bnear interpolation of grab
concentrationsrather than the loads estimated by the regression modefAdditionally, there
are two major differencesto the grab-based loads methodl1. Storns with a single collected
grab were not considered incomposite model calibration, and 2. Only load for storms with
more than one collected gralwere estimated for development of thecompositetrend
model (vs. thegrab-basedmethod, for which loads for ALL storms in sampled water years
are extrapolated from the turbidity and climate factor relationships derived from the
subset of sanpled storms).

Power Analysis

Following selection oftrend models for the grab- or composite-based methods Monte
Carlo simulations were developed to test the stastical power for determining declinesin
loadswith the models, assuming varying levels of trend over 20 yearsiere, ®owerdis
defined as the probability of detectng a trend of acertain magnitude during a specified
monitoring periodj UAAOOQh xEAOA A isdetUddFRb.AssudidgihisO OAOA |
definition, a power analysisprocedure was developed to testhe likelihood of detecting
significant inter-annual trends based on futurescenarios ofstorm sampling. The goal of the
analysis was to determine thestatistical power associatedwith detecting significant inter-
annual trends using the selectedtrend model based on several sampling designs and
magnitudes ofPCB chang€Appendix B).

11 4UPA ) AOOT O OAOA T &£ uvbp EO AT 1T OAT OET 1 AIO6EBOA MAFAAA ) A ORGD GEHD ACEAAOORAOA 1 O
be more appropriate for environmental trend applications where the risk of false positives should be balanced with the risk false

negatives. For this study, we used the conventional 5% error rate as a starting point. Increasing the Type bemate would have the

effect of increasing the power to detect trends.
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Samplingdesign simulationswere developed byassuming that 1) future concentrations
and loadswill be sampledin the same manner ashe current data, and 2) thedistribution
of storm events (number, timing. and magnitude) will le similar in the future.
Subsequently geometrictrends of 10% to 90%decline over 20 years wereimposed to the
data by year In the grab-based designs, PCB concentratiorisr the sequence of future
yearswere simulated based off the original set of grabasnples.For the compositebased
sampling strategy, a similar approach was usedxceptsimulations were based on the
calculatedcompositeloads using thelinear interpolation approach described in Appendix
F.

To simulategrab/composite data for 20-years, concentrations/loads were repeatedfrom
the 12-year dataset, maintaining their originalsequenceincluding missing years of data.
This methodology resulted in 56 storms over 20 years for grabased simulations and 32
storms over 20 years for compositebased simulations. To simulate sampling at lower
levels of effortto the previously sampled storms(e.g, 75% of 56 storms)a random
selection of those storms were sub-sampled from the 20 year pool of simulated storms
(250 trials per level of effort) and propagated throughSteps 1 and 2 irthe model approach
to generateestimated event loadsand standard errors. Subsequently Monte Carlo
simulations (400 runs) of the trends model(Step 3)were conducted using the estimatd
event loads and associai standarderrorsin loads. In the composite approach, since no
model error in loads estimation was calculated, two standard error estimates were tested
to bridge the expected range in composite load error; 5% and 30%he estimated
statistical power for eachsampling designwas calculated as theneanproportion of MC
simulations (250 sample sets x @0 runs) where a significantwater-year term was detected
with the corresponding trend model.

Results and Discussion

Data Evaluation

Figure 1summarizes the PCB concentrabns, turbidity , and particleratio concentrations
determined from grab stormsamples collectedat GuadalupeRiver used in statistical

modeling. PCBconcentrations andturbidity were most variable during theOx A 08 xAOAO
years (particularly, 2003 and 2005), as well as during 202, and lower duringtheO A O U &

water years, such asn 2006, 2010, and 2013. This is illustrated in the PCB datamormalized

to suspended sedimenti(e, particle ratio concentration), where meanconcentrations
appearrelatively consistent over time, with few events in the time series havmg more

variable particle ratio concentrations.

Table 1. Predictors Tested in PCB Concentration Models

Parameter Transformation Type Guadalupe River
Turbidity Natural-Log Continuous variable Default predictor in all
models
Accumulated Rainfall Natural-Log Continuous variable Upper, middle, lower
Year-To-Date watershed USGS gauges
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Rainfall Intensity Natural-Log Continuous variable Upper, middle, lower
watershed USGS
gauges*
Season N/A Categorical variable Early or Late?
Month N/A Categorical variable October to March
Water Year Raw Continuous variable; 2003-2006, 2009-2010,
mean centered 2012-2014

* 30 min-7 hr lagged rainfall with 30 min-2 hr antecedence for each gauge; ° Early/Late Season = season-
to-date rainfall less than/greater than 50% mean annual rainfall

Concentration Model

The first step in our model evaluation was to construct linear models to predict PCB
concentrations as a function of turbidity, accumulatedainfall, rainfall intensity, seasonal,
intra-annual, or inter-annual variability (Table 1). Several climatic variables related to
discharge and precipitation indicated linear relationships (Figure 2). It should be
acknowledged that a discharge parameter wadiscounted from consideration in the final
tested models because it is a component of the loads calculations in Step 2. However, as
precipitation and discharge are correlated, this influence on PCBs has to a certain extent
been accounted for in the testd parameters. All models included turbidity as the primary
predictor variable.

Forty-four models were examined for Guadalupe River. Summary statistics for the top five
models in addition to the turbidity model are shown in Table 2. None of the top models
differed greatly in the amount of explained variation (R=0.781z 0.811). However they all
represent a significant improvement in R relative to the Default model that related
concentration to turbidity alone (R2 = 0.519). Two models were selected wherall model
terms were statistically significant; Model 42 and Model 21 (highlighted in gray on Table
2). These two models consisted of five (Model 21) and six (Model 42) statistically
significant predictor variables each; turbidity, rainfall indicators forthe upper and lower
watershed, and a temporal term for season. The only difference was the inclusion of a
polynomial term for one of the rainfall indicators in Model 42. These two models were
further scrutinized in residuals analysis prior to final modelselection.

Diagnostic plots of the residuals of Model 42 and 21 suggest that both models conform to
assumptions of normality and homoskedacity (Appendix C). The normalQ plots

correspond to a relatively straight line (suggesting normality) and there didhot appear to

AA T AET O 1T 0601 EAOO AAOGAA 11 OEA #11TE8O0 AEOOATA
through statistical tests for normality (Shapiro-Wilk test) and homogeneity of variances

(not presented), and plots of residuals vs. fitted values and fittegalues vs. standardized

residuals (i.e., residuals divided by its standard error). The graphical assessment indicated

residuals that span the range and did not point to highly skewed values or naandom

errors in the predicted values.
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Figure 1. Guadalupe River PCB Concentrations, Turbidity, and Particle Ratio
Concentrations by Water Year. Widths of boxes are proportional to the square -root
of the number of observations in each group
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Table 2. Summary AIC Statistics for the highest ranked Guadalupe River PCB Models.
All terms were significant (p < 0.05) ineach model except for those terms shown iitalics

Model

Parameters

K AlICc Delta AICc Cum

AlCc

Wi

Wit

Adj.
R2

Model 42

Turbidity +
30minLag:2hrSum[CSJ] +
30minLag:2hrSum[CSJJ* +
7hrLag:7hrSum[LP] + Season®

7 88.12 0

0.96

0.96

0.811

Model 20

Turbidity +
30minLag:2hrSum[CSJ] +
4hrLag:4hrSum[ALM] +
7hrLag:7hrSum LP] + Season®

7 96.09 7.97

0.02

0.98

0.791

Model 21

Turbidity +
30minLag:2hrSum[CSJ] +
7hrLag:7hrSum[LP] + Season®

6 97.72 9.60

0.01

0.99

0.783

Model 43

Turbidity +
30minLag:2hrSum[CSJ] +
7hrLag:7hrSum[LP] +
7hrLag:7hrSum[LP]* + Season®

7 98.16 10.04

0.01

0.99

0.786

Model 23

Turbidity + 30minLag: 2hrSum
[CSJ] + ThrLag: 7hrSum[LP] +
Season'+ Turbidity* Season®

7 99.75 11.63

0.781

Model 1

Turbidity

3 157.85 69.72

0.519

@ Jan/Feb vs. all other months (categorical; 2 levels)
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Figure 2. Relationships Between Climatic Variables and PCB Concentrations at
Guadalupe River

PCBs (log units)

PCBs (log units)
=

o
'
- mme

4

.- e 0

3 2 1
CSJ Lag Accumulated Rainfall (log units)

5 6 7 4
SSC (log units)

PCBs (log units)
AR
e
. L]
.
.
.

' . . [ '
3 2 4 3 2 1

PCBs (log units)

ALM Lag Accumulated Rainfall (log units)

12- .
.
. @ .
@ 11-
L —4
C
3
g 10-
7]
i}
o]
T ..
. P
.. .
8- |
5 6 7 8
Discharge (log units)
128
.
' .
w - ! .
=
c
=1 .
2 i 1
= 10~ l .
z ¥ i
.
3 ]
a 9_' . |
1
' .
8= v
4 3 2 1
LP Lag Rainfall {log units)
12- »
-
. .
w 11-
=
c
3
g 10~
(]
m
8]
a .
. . .
- .. - .
8-, v | v v v
4 3 2 1 0 1

LP Lag Accumulated Rainfall {log units)

Table 3. Summary Statistics For Model 21 Relative to the Default Model

Model | Model Parameters K | Adj. R | Pred. | RMSE | PRESS
RZ
21 Turbidity +
30minLag:2hrSum[CSJ] + 7 0.78 0.78 0.41 15.2
7hrLag:7hrSum|[LP] + Season
1 Turbidity 3 0.52 0.51 0.62 325
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Table 4. Coefficients for Proposed Guadalupe River PCB Concentration Model

(Model 21)
Model Parameters Estimate S.E. t-value | p-value
Intercept 6.681 0.387 17.27 < 0.0001
Turbidity 0.802 0.066 12.23 < 0.0001
30minLag:2hrSum[CSJ] 0.311 0.049 6.32 < 0.0001
7hrLag:7hrSum|[LP] -0.143 0.040 -3.59 0.0006
Season -0.422 0.103 -4.09 0.0001

Given the similarity in the results of Models 21 and 42, the simpler modé&rmulation of
Model 21 (without polynomial terms) was chosen to proceed with. Summary statistics of
the selected model are shown in Table 3. Clearly, Model 21 exhibits relatively higher model
R2 and predictive R, and lower RMSE and PRESS statistics r@latto Model 1 (the Default
model).

Residuals were plotted against water years and months to examine temporal structuire
the unexplained variancelf any systematic temporal trend in the residuals veime were
observed, it would invalidate the subseqent test using the trend modelThe residuals
against water year were relatively well distributed around zero during the earlier period of
sampling and 2014, but deviatd in 2012 and 2013 (Figure 3). Although the residuals for
samples collected during thes years appeared higher and lower, respectivelyelative to
other years, this apparent difference was not statistically significant when tested by
regression (not presented). Similarly, November events tended to have lower residuals
than other months, butthis difference was not statistically different.

To further explore whether model error patterns can be explained by everdgcale variation
not already captured in the selected predictors, the residuals were plotted against two
intermediary climatic response variables (specifically, observed discharge and suspended
sediment concentration). These graphical analyses indicate the model residuals are
randomly distributed with respect to these response variables (Figure 4). None of the
linear regressions d residuals against flow or SSC were significant (not presented).
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Figure 3. Guadalupe River PCB Concentration Model 21 Residuals Plotted Against

Water Year (A) and Month (B). Pointsreflect residual values, and the regression line
resulting from a linear model of residuals againstwater year or month. Both regression
slopes were not significantly different from zero.
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Figure 4. Guadalupe River PCB Concentration Model 43 Residuals Plotted Against
Flow and Suspended Sediment Concentrations .
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Next, crossvalidation methods were conducted to examine estimates of model error and
the robustness for making predictions with an independent dataset. Two common methods
were applied; LeaveOne-Out (LOOCV) and #old cross validation (with k = 5). Thecross
validation results of both methods on theéwo selected mode$ were similar (Appendix D).
Had there been a large difference in RMS# R2it may havebeenconcluded that the

models were overfitting the data, which could lead to more spurious predictns.

Finally, the predictions fromModel 21 were plotted against the observed PCB
concentrations. Figure5 shows the majority of GuadalupeRiver data are predicted
reasonably well by the model, withfew samplesshowing large deviations from observed
values.

Storm Selection

The next step in the analysis was to use the selected concentration model to predict PCB
concentrations from wet season turbidity and rainfall data across the entire period of
sampling in the watershed (2@3-2014). Note that since the grab sample dataset that
formed the basis of the model only contained samples from October to March to generate
the seasonal variable in the selected model, only concentrations for those months in the
dataset could be predictel. Therefore,predictions for data records in April and May of each
water year was not performed due to concerns over extrapolation beyond the range in the
data (un-sampled months or years).
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Fig 5. Guadalupe River PCB Concentration Model 21. Relationship between predicted
and observed grab sam ples. Predicted concentrations were back -transformed to
ng/L
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Subsequently, storm selection criterisdbased on peak flow, minimum flow, and
precipitation were applied to the continuousrecord O1 A A O &ddrh AD AT @O 6
the development of the trends model. Figuré summarizes thepeak flow for the selected
storms (n = 75). Generally, the discharge during events in any single year had a median
around the selected minimum peak flow o600 cfs. However, 208 was associated with
much more variable and higher storm flows, while the more recent yeansere drier, with
many storms exhibiting flows that were generallyless than500 cfs, (except at peak flow).
These features of the dataset further support the neefdr the trend model to explain
climatic responsepatterns in PCB loads.

Loads Calculation

The 15minute predicted concentrations atGuadalupeRiver associated with theser5
storms were converted into loads by combining the modeled concentrations with
measured flow obtained from the USGS gauge (11169025) on the low@uadalupeRiver.
Figure 7 shows the subsequent propagation of therediction errors from predicted (15-
minute interval) PCB concentrationgo event loads from this step in the analysisThe
storms that exhibited less precision were those with predicted event loads greater than
100 g per eventFor example, the highest PCB load wastimated for a sbrm on 12/19/03
that exhibited an event load 0f461.3+ 30.4 g (Storm # 3). Generally individual storms with
event loads less tharb0 gexhibited errors of approximately 5% of the event load estimate
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Trend s Model

The final step in thestatistical analysis procedure was to evaluate models thaest for
significant temporal trend in eventloads, whileaccounting forthe relative influence of

climatic parameters(e.g.related to antecedence, accumulated rainfall and dividual storm

lagged rainfall indicators Table 5). Twenty-five predictor variables were selected for
testing, which yielded 44 regression models that were examined for AIC statistics and

statistical significance, in the same manner as in Step 1. Additional complexities to the

model structure were also consideredsuch as using polynomial terms and interactions.

Table 5. PCBTrends Model Parameters Explored

Category

Transformation

Type

Parameter

Accumulated
Rainfall

Natural-log

Continuous variable

YTD at City San
Jose [CSJ] or Loma
Prieta [LP] rain

gauges
Lag Rainfall Square-root Continuous variable CSJ 30min Lag or
LP 7hr Lag
Max Rainfall Raw Continuous variable CSJorLP 1to6 hr
max
Antecedence | Square-root Continuous variable CSJ or LP 1-day, 7-
day, 14-day
Storm Flow Natural-log Continuous variable Length of storm
Duration (days)
Inter-annual Raw Continuous variable; mean | Water Year (2003-
centered 2014)
Season N/A Categorical variable; Month (Oct-Mar)
Jan/Feb vs. other months
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Figure 6. Peak discharge (natural log of peak in cfs units) for storms selected for the
trend s model.
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Figure 7. PCB Loads (+/ - standard error) for Storm Events in Guadalupe River (N = 75; 2003 -2014) . Estimated loads
and standard errors were determined frompredictions and errors ofthe concentration model and assume a 10%tandard

error in discharge.
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Table 7. Guadalupe PCBTrend Modeling AIC Statistics. Only for Model 30 were all terms significant (p < 0.05). Not

significant model terms are shown intalics

Model

Parameters

K

AlICc

Delta
AlCc

AlCc
Wit

Cum.
Wit

Adj.
R2

Pred.
R2

RMSE

PRESS

Model 34

30minLag:2hrSum[CSJ] +
7hrLag:7hrSum[LP] +
3hrMax Rainfall[LP] +
StormFlowDuration[CSJ] +
Season + WaterYear

100.4

0.00

0.36

0.36

0.86

0.84

0.42

16.1

Model 35

30minLag:2hrSum[CSJ] +
7hrLag:7hrSum[LP] +
3hrMax Rainfall[LP] +
StormFlowDuration[CSJ] +
StormFlowDuration[CSJ]? +
Season + WaterYear

100.6

0.26

0.32

0.68

0.86

0.84

0.41

16.0

Model 36

30minLag:2hrSum[CSJ] +
30minLag:2hrSum[CSJJ* +
7hrLag:7hrSum[LP] +
3hrMax Rainfall[LP] +
StormFlowDuration[CSJ] +
Season + WaterYear

100.7

0.29

0.32

1.00

0.86

0.84

0.41

16.2

Model 32

30minLag:2hrSum[CSJ] +
30minLag:2hrSum[CSJ]* +
7hrLag:7hrSum|[LP] +
3hrMax Rainfall[LP] +
Season

124.0

23.6

0.00

1.00

0.80

0.77

0.50

23.0

Model 30

30minLag: 2hrSum [CSJ] +
7hrLag: 7hrSum [LP] + 3hr
Max Rainfall [LP] + Season

125.3

25.0

0.00

1.00

0.77

0.80

0.50

23.0
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Figure 8. Guadalupe River Trends Model 34 Residuals Plotted Against A) Water Year
and B) Month. Points are residuals, and the regression line resulting from a linear model
of residuals against water year or month. Both regression slopes were not significantly
different from zero.

A)
1.0- .
. -
.
] . *
— ' .
£ 05- . . .
c .
=0 = L ] : L ]
[ ]
g . .
= . .
o . - T . .
= 00 4 ]
B . ’ $ - |
.% ™ - .
] .
o ; 1
0.5- & . L]
. : .
™ . =
20025 2005.0 2007 .5 2010.0 20125
Water Year
B)
1.0~
. .
.
— 3 H
W 05- . . .
c -
o i
g 1 .
=~ p0- ¥ I ’
w0
™ T 4 —% L
=
= . 3 . | .
o L .
™ ]
1.0-
Ot Mow Dec Jan Feb Mar
Month

APPLIED

rarime SCIENCES

24



Figure 9. Guadalupe River Trends Model Residuals Plotted Against Flow and SSCfor
each corresponding storm employed in the trend model
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Statistical testingof 44 generalizedlinear modelsindicated three modelswith the highest

I EEAI EEI HeAcritingPCB8 AvarDI@adisModel 34 35, and 3§Table 7). They all
consistof at leasttwo continuous climatic factors from the lower and upper watershed
gauges (San Jose and Loma Prieta, respectivelygategoricalvariable for season and
continuous inter -annua trend. Models 35 and 3&differed from Model 34 by theaddition of
polynomial variables (not significant in either case) In all caseghe water year term was
alsonot statistically significant (Table9). Following the same rationale of the concentration
model, the simplest model with the highest number of statistically significant model terms
was selected In this case, Model 34it these criteria andwas alsothe highest ranked based
on AIC statisticsand thus was selecteds theproposedtrends model for GuadalupeRiver.
In Figure 8, it is evident there is no remainingeasonal or interannualrend to the

residuals over time.Model residualsalso passed formal testing fomormality and
homoscedasticity (Appendix E).

APPLIED #arihe SCIENCES 25



Table 8. Coefficients of Proposed Trend Model for Guadalupe River (Model 34)

Model Parameters Estimate S.E. t-value | p-value
Intercept 2.11 0.18 11.9 < 0.0001
30minLag:2hrSum[CSJ] 1.23 0.14 8.50 < 0.0001
StormFlowDuration[CSJ] 0.69 0.12 5.76 <0.0001
7hrLag:7hrSum][LP] -0.79 0.24 -3.33 0.001

3hrMaxRainfall[LP] 1.63 0.25 6.48 <0.0001
Season -0.67 0.11 -6.24 < 0.0001
Water Year 0.02 0.01 1.13 0.260

Regressionof the model residualsto discharge and SS@igure 9) suggest that ModeB4

has largely capturedthe variation at eventscales, adoth the positive and negative

residuals span the range in flow and SSC conditiont. the highest flow and SS@ventsthe
residualsindicate some heterogeneityexhibited by more positive residuals. This would
reflect anunder-prediction of event loads under those conditions.Linear regressions of

peak SSC (slope = 0.26, R2 =0.17, p = 0.0002) and peak flow (slope =0.30, R2=0.17,p =
0.0003) against the residuals were both significanfThese apparent differences are no
manifested directly in the predicted PCB loads, howeveasthere was no statistical
relationship (slope = 0.002, R2 < 0.01, p = 0.96tween predicted loads and theesidual

error from the trend model.

Two crossvalidation experiments were conducted b examine estimates of model erm As
in Step 1 of the analyses, two common methods of CV were applied; Le@e-Out
(LOOCYV) and ¥old cross validation (with k = 5). As shown in Tabl&, the RMSE estimated
during the development of themodel was 0.43. Based onboth the LOOCV methd and k
fold CV, the RMSE was estimated at 0.4"here werealsoonly minor differences in R2, with
LOOCV indicating R= 0814 and k-fold CVof 0.859. These estimates were very similar to
the R? and adjusted R for the model, 0.850 and 0.835 respetively. The lack of large
differences in RMSE and Rn cross \alidation relative to the model, suggess$ that the
model is not ovekrfitting the data.

Tofinally demonstrate the current slope of trend in PCB loadshe predicted even loads
were summed to determine the annuaktorm loadsand associated standarcrrors for
yearly estimates Figure 10 illustrates that despite relatively high PCB loads duringhe
earlier years of monitoring (Figure 7), there is alack of trendin the residuals of thetrend
model. This means thathat any apparent trend in theloads data over time can be
accountedfor by climatic factors.
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Figure 10. Regression of water year vs. residuals of proposed Guadalupe River trend
model (all variables except water year included). Slope of 0.00 confirms the lack of
linear trend in loads over time.
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Power Analysis

Simulationswere conducted totest the power for detectingtrends in PCB loadsassuming
either grab-basedor composite-basedsampling designs Grabsimulations were conducted
based onsampling between 18(33% of pasteffort) and 56 storms (100% of past effort)
over 20 years with an averageof 3 grabs collectedon each eventin comparison, the
composite simulations tested sampling a single composite per stormbetween 16 to 32
storms over 20 years, 050% to 100% ofpastsampling effort. For each of the scenarios, a
given annual rate (geometric) change of interegranging from 25% to 90% net decline in
20 years)was imposed on the past sequence of empirical data, and the grab or composite
load calculation methodologyre-applied to the hypothetical empirical data, subsampled at
different levels of effort.

For the grab sampling designspower curves indicate thatmost trends of interest would
exhibit high statistical power. Inter-annualtrends of 25% or more would bedetectable
with > 80% power whensampling 28 storms(50% effort) over 20 years (Figure 11). This
design would equate to samplingat least2 storms in 13out of 20 years. During those 13
years, 46 grab samples are assumed to be collected during each stoa® performed in the
current sampling methods In all grab-based samplingdesigns(i.e., 33-100% effort) the
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power to detectimposedtrends of 90%decline over 20 years (the TMDL target) wouldbe
100%.

For the composite scenarios power curves indicate thatonly larger trends of interest

would be detectable with high power. 8mpling of 24 storms (75% effort) in 20 years

would be suffigent to detecttrends of 75% ormore (Figure 12). Similar to the grab design,
this suggests approximately 2 storms per monitoring year, assuming 13 of 20 years are
sampled.In the compositebased sampling designs, the power to detect trends of 90% over
20 years (the TMLL target) would be 100% if at leastl6 storms are sampled and the
assumederror in loads is 5%. Under the higher variance scenario (30%nly the design

for 100% effort (32 eventsin 20 years)would attain 80% power.

Finally, to test the power of the grab-based methodsunder more variable conditions (e.qg.,
with concentrations less reliably predicted by turbidity and climatic factors) the sampling
designs werere-tested assumingan inflated variancein the sample data Assumingrandom
error was increased by+/ - 20%, thesize of trend that could be detected with > 80% power
at either 50% or 100% effort was approximately the same as with the original analysis
(Figure 13). However, if random vaiability increased to +/ - 50%, the size of detectéle
trend with > 80% power and 50% sample effortwould increase to 50% or greater declines

Figure 11 . Power Curves for Grab Sampling Design Scenarios
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Figure 12. Power Curves for Composite Sampling Design Scenarios. Scenarios with
solid linesinclude a 5% standard error in loads;dotted lines include a30% standard error
in loads.
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Figure 13. Power Curves for Grab Sampling Design Scenarios Including an Inflated
Random Error. Scenarioswith solid lines include +/-20% random error, while dotted lines
include +/-50% random error.
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Conclusions

The statistical analysisapproachdevelopedin this project has shown thepotential for
minimizing error associated with estimatesof PCB load$y accouning for major sources of
variability in climatic response Applying the statistical modelto the Guadalupe River data
supports earlier reports that documentalack ofsignificant inter-annual trend in PCBoads
(McKee et al. 2017)The power analysisresults indicated that there is a relatively low
chance of concludinghat there is a significant trendwith the modeling approachunder the
null hypothesis (lack of a trend).

The key feature of the trend modelprocedure is that it tests fora change in loadsafter
accounting for climatic variability. An apparent decreasein loadsin the Guadalupe River
from the early, wet years of the dataset to the more recent, drier yeavgas found tonot
constitute a significant trend afterexplicitly accounting for rainfallamount and timingin
the watershed This feature of the modelis critical to the conclusion of whether a statistical
trend may existin the future. For example ifthere were a trend in PCB loadin the future
caused solely bychanges inclimate, the trend model would continue to support theresult

I £ OT 1 Hoewe if dindatic factors followed a new patternof more frequent rainfall ,
which cannot beaccounted forsolely using the exsting trend modelfactors, the conclusion
from the trend test may be different As a result,future scenariosmay arisewhere PCB
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loads decline due to management changes, but overalgadsare actually increasingdue to
increased rainfall patterns Thus, heinfluence of shifts inclimatic patterns on the trend
model will warrant consideration in future analyses

Another important aspectof the statistical approach was the use of storm selection criteria
to selectstorms for testing with the trend model. This approachincreased the saple size
for modeling by encompassng all storms. However, by definition the method assumes that
the conditions of allselectedstorms in the dataset behave in the same manner as the
sampled storms This assumptionis likely an oversimplification of the behavior of loads in
the watershed.

The power analysiswork further showed that the grab-basedmodel approachexhibited
higher power for detection of trendover composite methods. Th@ower simulations
showed that a 20-year monitoring program where at least two storms are sampled in 65%
(13 of 20years) of the time series would have high statistical power to detect a 25% or
greater declining trendin PCB loadsThe simulations indicate that the higher sample size
and relatively low standarderror of load estimates of the grabbased methodology holds
promise for detecting trends of management interest in the futureSuch an approach could
be usefulto verify relatively small future changesat GuadalupeRiver over time, or ata
selectnumber of other watersheds where such methods can be applied

In the event thathigh frequencyturbidity data are unavailablein the future, andload
estimatesare based onevent-compositesamples it is likely that a 20-year program will
lack the statistical power to detectsmaller changesin loads over time Using thecomposite-
based trend model presented in this study, iappears thatdeclinesof 75% or more over 20
yearswould be detectable unlessa greater frequencyof storms are sampledduring 20
yearsthan were assessed heré.e., fausing on capturing more stormswith fewer samples
or only a single composite per storm)

Finally, the current modelingframework is based on the empirical response of the
watershed to past climate drivers.Since he distribution patterns of climate drivers, and
watershed characteristics (current land use distribution,imperviousness, soil and stream
bank erodibility, among other factors) maychangeover time, it is important that future
efforts to employ the model framework consider the potential forfuture changes due to
uncontrollable driving factors, as opposed to response factors that may be directly or
indirectly managed or mitigated (e.g., watershed efforts to reduce or increaseispended
sediment supply from various areas or sourcesAdditionally, the statisticalapproaches
presentedhave the potentialto optimize future parameter estimatesfor improved annual
loads estimation, and detection of future trends in loadsYet, gven the scope of the study, it
would be premature to generalize the trends model foiGuadalupeRiver to other Bay Area
watersheds. Therefore, future effortawill alsoneedto examinethe utility of designing
similar trend models and supporting power analysiscenariosfor other individual
watersheds The case study for Guadalupe River has shown thag employing high
frequencyturbidity and concentration data,there is the potential toseparate climatic
responsesfrom inter-annualtrends.
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Thefinal step towards selectinga preliminary monitoring design for the Guadalupe River
(or other target STLSwatersheds) wasto evaluate thecost-effectivenessof the various
sampling approaches at levels of sampling intensjtindicated by the power analyss.
Appendix G presents cost scenarios fordih grab-based and compositebasedmethods;
assuminggrab sampling in 10 years over a 20 year period with 4 storm evers/year and 4
grab samples/storm; or composite sampling in12 years over a 20 year period with 2 storm
events/year.
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Appendices

Appendix A. Steps in developing predict ors for modeling PCB concentrations from
limited storm water sampling

1) Literature review z turbidity has been used as a surrogate for
*  Mercury (Quémerais et al. 1999, Wall et al. 2005, David et al. 2009, Ruzycki et al.
2011, Riscassi and Scanlon 2013, David, et al. 20MgKee and Gilbreath 2015)
*  PCBs (David et al. 2015, Gilbreath and McKee 2015)

2) Parameter development and selection Stratified the data into subsets:
* Lagtimes,
* Rainfall intensity
*  Timing (early/later, rising/falling)

3) Also considered conceptual models irelation to:
*  Source homogeneity
*  Wetting and drying

4) Sought terms that would impact processes
*  Washout/exhaustion effect on source
*  Short term- rising falling stage
* Early or late wet season (antecedent rain)

5) Types of factors
*  Site Observations
i) Define hydrogaph peak to categorize rise/fall
* Calculatedvalues
i) Cumulative precigtation threshold for early vs. late season
i) Event cumulative preciptation (event antecedent rain, e.ghours to days)

6) For Guadalupe Riveralsoattempted to convert rainfall into a % urban source surrogate
* #1 = concurrent rainfall at 3 gaiges, ratio urban/total

#2 = 0.5hr lag of 2hr sum urban, 4 & 4 mid, 7 & 7 upper watershed

#3 = #2 but average per ¥ hour (/8, /16, /28 of #2 components)

#3.5 = #3 with area and runoff coeff weights fotow/mid/up

#3.6 = #3.5 but 1, 2, 4 hr avgs (same lags)

#3.7 = like 3.6, but 2, 3, 4 hr avgs, 0.5, 3, 5 hr lags for low/mid/up

Denominators of #3 to#3.7 are time averaged rainfalls with lags

b I D T
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Appendix B. Example representation of geometric declining tr ends tested in power
analyses.

Points represent years when samplelata weresimulated based on the pattern of sampled
years in the current Guadalupe River dataset
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Appendix C. Guadalupe River PCB Concentration Model Residuals

Diagnostic Plots of Residuals z Model 42
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Appendix C. (continued)

Diagnostic Plots of Residuals z Model 21
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Appendix D. PCB Concentration Model Cross Validation Results

CV Method | Model RMSE | R2Model | RMSE | R2CV
Model CcvVv
LOOCV 0.411 0.794
K-Fold 42 0.381 0811 0.432 0.812
LOOCV 0.436 0.768
K-Fold 21 0.410 0.783 0.428 0.780
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Appendix E. Guadalupe River Trends Model 34
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Appendix F. Composite Scenarios
Simulations of Composite Sampling Strategy
Approach:

A key assumption of employing thestatistical modelingapproach developed in this project
is the use ofmultiple grab samplesto characterize thePCBparticle-ratio concentration of
storms. However, it is feasible that the STLU8ogram may switch to a composie-based
sampling approachin the future to lower analytical costs. Therefore, to evaluateatrend
procedure in a compositebased sampling program, an alternativanalytical approach was
evaluated.

In Step 1, composite samples were simulated, as prior cosite datafor PCBshave not
been collectedfrom the GR Therefore, linear interpolation functions were generated
between each pair ofgrab samplesthat have beencollected.All storms were included
where at minimum of two samples were collected (N = 19).

In Step 2the interpolation functions were applied to entire storm periods (using the storm
selection criteria describedin the Methods ofthis report), to determine the instantaneous
PCB concentrationsat 15 min time-steps. In order to extend the interpolation to the
beginning and end of the storm window, the first and last grab sample concentration was
assumedconstant foreach 15minute time point (Figure F1). This stepprovided a
consistentmanner for selecting stormevents for testing trend models. Subsequently, the
PCB concentrations were converted to event loads, corresponding to the same storm
periods as for the grab based approach.

In Step 3, the estimatd composite loads were employed in a trend model evaluatioto test
support for event-scale model parameterssame as for the grafbbased methodology. The
difference being that the nuner of storms used to tesmodelswas limited to just

OOA [ bstodnd @l = 19), not the entire pool of stormsselected(N = 75).

Upon consideration of AIC model statistics andesults of residuals analysisa proposed
composite-basedtrend model was employedin a power analysis procedure The goal of
this analysis was to assesthe statistical power for detecting trendsunder a composte
strategy, where high-resolution turbidity data and grab sample concentrationsare not
feasible The power analysis methods for both gralbased and compositebased sampling
are described in the Methods.
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Results:

Figure F1. Example of the linear interpo lation method to generate composite data
(Steps 1-2). Red circles arethe sampled grabs, and black circles are iinute sample
intervals. Grab concentrations were interpolated between eagbair of grab samples, and
the interpolation function applied to every 15-minutes betweensetsof grabs.The
interpolation method was used toestimate PCB concentrations every 18ninutes.
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