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Executive Summary 
 
The Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), with 
guidance from its Small Tributaries Loading Strategy (STLS) Team, has been conducting 
small tributary loading studies at several sites in the Bay Area since 2003. A current 
priority for the STLS is developing a strategy for measuring trends in pollutant loadings 
from small tributaries to the Bay.  
 
This technical report presents the work to develop a statistical model for trends in loads of 
polychlorinated biphenyls (PCBs), and estimate the power for proposed monitoring 
designs as a basis for detecting trends for the Guadalupe River watershed (San Jose, 
California). The statistical approach builds upon the turbidity surrogate methodology that 
has been employed in the STLS since 2003. A novel, two-stage statistical modeling 
approach was used to incorporate the significant turbidity-PCB relationships that exist, and 
evaluate climatic, seasonal, and inter-annual factors as additional potential drivers of PCB 
loads. The longest-running time series of tributary monitoring by the STLS on the 
Guadalupe River was selected as the case study for developing and testing the statistical 
approach. As a result of this effort, a multiple linear regression model for detecting trends 
in PCB loads in the Guadalupe River was developed.  
 
There are two main findings from the modeling effort. Firstly, the statistical models did not 
find a significant linear inter-annual trend in current PCB loads for the period 2003-2014 
after accounting for climatic variability. Secondly, simulations to estimate the power for 
detecting significant trends in PCB loads, employing a grab-based design using the 
proposed statistical methods would have sufficient (> 80%) power to detect 25% or 
greater trends over a 20-year period. A parallel analysis to simulate a composite-based 
sampling design indicated that this approach was less sensitive to trends, and could only 
detect larger trends (>75%) over 20 years. Overall, the simulations indicated that the 
higher sample size and relatively low standard error of load estimates of the grab-based 
methodology holds promise for detecting trends of management interest in the future. 
Finally, a cost estimate for grabs and composite designs was included as an appendix using 
the following assumptions: grab sampling in 10 years over a 20 year period with 4 storm 
events/year and 4 grab samples/storm; composite sampling in 12 years over a 20 year 
period with 2 storm events/year. 
 
To date, the statistical models developed in this project have only been parameterized for 
the Guadalupe River, which may be subject to refinement and testing, as future PCB 
monitoring data are collected in the watershed. A similar approach, may also be effective if 
developed for other tributaries, but the combination of variables used to develop the 
models will likely be different. Therefore, the modeling techniques developed here could be 
applied to other watersheds in the future, to determine if the approach, if not the specific 
model parameters and coefficients, is generally applicable.  
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Introduction 
 
The Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), through 
its Small Tributary Loading Strategy (STLS) Team has conducted small tributary loading 
studies at several sites in the Bay Area since 2003 (David et al. 2009; Davis et al. 2007; 
McKee et al. 2004; McKee et al. 2005; McKee and Gilbreath 2009; McKee et al. 2006; Oram 
et al. 2008). The primary objective of these studies has been to determine annual loads of 
particle-associated pollutants of concern (particularly, Hg, PCBs, and suspended 
sediments). The longest running time series of loads collected in the RMP exists for 
Guadalupe River in San Jose (2003-2014; McKee et al. 2017), where a turbidity surrogate 
methodology has been employed, as it has been demonstrated to be an appropriate and 
cost-effective method for unbiased particulate loads calculation (Grayson 1996; Wall et al. 
2005). The tributary loading studies have provided valuable information for the 
development of the San Francisco Bay and Guadalupe River Hg TMDLs (Austin 2006; 
SFRWQCB 2006), and the Municipal Regional Stormwater NPDES Permit (MRP) (SFRWQCB 
2009; SFRWQCB 2015). 
 
The San Francisco Bay Regional Water Quality Control Board (Water Board) has developed 
Total Maximum Daily Load (TMDL) requirements for major pathways of Hg and PCB 
loading to San Francisco Bay. Stormwater load allocations are particularly stringent, 
allowing for annual discharge of 82 kg of Hg and 2 kg of PCBs, with the objective of 
improving water quality in the Bay to desirable standards in 20 years. These targets 
represent estimated reductions of 50% and 90% from the present load estimates of 160 kg 
of Hg and 20 kg of PCBs, respectively.  
 
To meet these goals, the TMDL reports and the MRP call for improved loads information to 
answer four key management questions: 

1. Identify which San Francisco Bay tributaries contribute most to impairment from 
pollutants of concern (PCBs, Hg, suspended sediments), 

2. Quantify annual loads or concentrations of pollutants of concern from tributaries to 
the Bay, 

3. Quantify the decadal-scale loading or concentration trends of pollutants of concern 
from small tributaries to the Bay, and  

4. Quantify the projected impacts of management actions (including control measures) 
on tributaries and identify where these management actions should be 
implemented to have the greatest beneficial impact. 

 
A current priority for the STLS is developing a strategy for measuring trends in pollutant 
loading from small tributaries to the Bay. STLS monitoring data have demonstrated a high-
level of precision for quantifying annual loads. However, recent analyses conducted to 
evaluate intra- and inter-annual variability, suggested an apparent lack of power for 
detecting trends, unless unrealistic sampling effort is performed (Melwani 2016). Upon 
detailed review of these results, the STLS Team concluded the apparent lack of power 
might not be simply due to insufficient sampling effort or the consequence of the sampling 
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approaches used. Variability due to physical climatic processes affecting inter-annual 
patterns in loads needs to be examined.  
 
In this study, a statistical modeling procedure was developed to test whether the temporal 
pattern in loads of a sediment-associated pollutant of concern (i.e., PCBs) may be estimated 
by incorporating climatic surrogates for various fluvial processes in combination with 
measured turbidity. The basis for including climatic processes into a statistical modeling 
framework was to improve the predictive power for annual loads estimation. However, 
employing such an approach for detecting trends in loads has not previously been 
investigated for PCBs or other particle-associated contaminants. Therefore, this report 
describes a new approach to testing for trends in small tributary loads, and subsequently 
employs power analyses to examine sampling designs that could be implemented in the 
STLS monitoring program to collect data to support implementation of the statistical 
framework. This work focused on PCBs in the Guadalupe River as a case study.  

Methods 
 

Background 

The Guadalupe River is located near San Jose, the largest city in the San Francisco Bay Area. 
Its watershed is the fourth largest in the Bay Area, representing about 500 km2. A station in 
the lower watershed has been monitored with funding by the RMP and Santa Clara Valley 
Urban Runoff Pollution Prevention Program (SCVURPP), in collaboration with the USGS 
(station number 11169025) since October 2002. The station is located upstream from tidal 
influence, but resides downstream from five main reservoirs, the City of San Jose, and the 
majority of flood control channels. The continuous flowing area downstream from 
reservoirs is estimated to be 236 km2, of which approximately 80% is urbanized landscape. 
The typical flood hydrograph produced by heavy rainfall will pass through the watershed 
over a period of ~ 12-24 hours, but larger and later season (February – April) floods may 
last for several days.  
 

Data Used 

Eight years of urban runoff data collected from the Guadalupe River during a 12-year span 
(2003-2014) were statistically analyzed in this project. The eight water years (WY; October 
1-September 30) spanned a range in climatic conditions, and thus a range in wet weather 
discharge and pollutant concentrations. Four WYs during the period were not monitored: 
2007-2009, and 2011. Data collected during the 12-year span has shown that sediment 
loads are almost exclusively transported during high flow events, and not during base flow. 
The peak discharge during this period was 6071 cfs in WY 2003. In comparison, during 
WYs 2005 and 2012-2014, the maximum discharge did not exceed 1000 cfs. Under base 
flow conditions, peak discharge was usually under 500 cfs.  
 
Over the course of the eight years, continuous monitoring of turbidity and discharge was 
performed, in addition to the manual collection and analysis of grab samples for pollutant 
and suspended sediment concentrations at several times during the course of storms. 
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These data were the basis for the statistical modeling procedures that follow. Further 
descriptive summaries of these data have been described previously (Melwani 2016). 
 

Statistical Modeling Approach 

Three key statistical analysis steps were employed to develop and test a statistical model 
for trend analysis in the Guadalupe River watershed. All statistical and graphical analyses 
were conducted in R Studio (running R v. 3.3.1). The following section describes the details 
of each step in the analysis process. 
Step 1  
A generalized linear modeling approach was used to examine variation in natural log PCB 
concentrations. Several iterations of the model evaluation process were conducted to test 
the climatic and temporal variables that provided the most robust predictions. Forty-four 
linear models consisting of 26 predictor variables were examined. Table 1 summarizes the 
general types of predictors and parameters considered. It should be noted that the initial 
list of predictor variables tested was more extensive to test support for varying 
antecedence and rainfall lag times, and methods for incorporating antecedence patterns 
based on best professional judgment by the STLS Trends Team (Appendix A). The footnote 
to Table 1 specifies the final set of model parameters employed in the model selection 
framework. 
 
The general equation of the regression model was: 
 

 
 
Where, ln(PCBs) is PCB concentration in natural log units, B0 – B3 are fitted coefficients of 
the model, ln(Turbidity) is turbidity in natural log units, Xi values are additional raw or 
transformed predictor variables, Ti values are time variables representing month 
(categorical), season (categorical), and/or water year (continuous), and ε is the 
unexplained variation (residual error).  
 
Model parameters were estimated by least squares multiple regression following a 
Maximum Likelihood approach. In all candidate models, turbidity was treated as the 
primary continuous predictor variable in the default model – Model 1. In examining 
subsequent sets of models, the analysis sought to incorporate factors related to discharge, 
rainfall patterns, and hysteresis signals of the watershed. All candidate models were 
evaluated independently. Both linear and polynomial functions were considered, as were 
the interaction between predictor variables over water year. Temporal trend was 
evaluated using water year (centered on the mean of the dataset). Rainfall variables with 
values of < 0.02” were substituted with 0.02” to facilitate logarithmic transformation. 
Selection of the ‘best’ model was made based on the AICc statistic, the AICc weights, 
statistical significance of model terms, and the minimum number of significant terms.  
 
Following selection of the top model(s), diagnostic tests were performed on the model 
residual values (i.e., the unexplained variance). Tests included checking for parametric 
assumptions of normality (Shapiro-Wilk test) and homogeneity of variance (Goldfeld-

ln(PCBs) = B0+B1ln(Turbidity)+B2Xi+B3Ti+e
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Quandt test). Graphical assessments of patterns in residuals were conducted to search for 
violations of independence plotted against predicted values, covariates (e.g., discharge and 
SSC), and temporal variables (i.e., month, water year). To ensure that all systematic 
temporal variability was captured in this model, linear regression of residuals against 
water year (centered on the mean) and month was performed.  If any systematic temporal 
variability remained unexplained at this stage, it would invalidate the subsequent trend 
analysis conducted on predictions from the model. Summary statistics of the models 
included evaluation of adjusted and predictive R2 values and the PRESS statistic. The 
predictive R2 and PRESS statistics are cross validation measures commonly used to gauge 
the quality of models with regards to making predictions. Due to the complexity of 
statistical testing of time series with irregularly sampled data, autocorrelation bias could 
not be assessed with these data.  
 
The last set of analyses to examine the concentration model outputs was to conduct two 
cross-validation (CV) experiments. Cross validation is a routine model validation technique 
for assessing how well the results of a statistical analysis will generalize to an independent 
data set. The first method used k-fold CV, where all the samples were randomly partitioned 
into ‘k’ sample sets (referred to as folds) of approximately equal size. Subsequently, the 
selected model was fit using all the samples except the first subset and the prediction error 
of the model calculated against the held-out samples. This procedure was repeated for all 
sample sets, and the model performance calculated as the mean error among the different 
sets. Secondly, the Leave-One-Out CV method was employed due to concerns that limited 
sample sizes may bias the k-fold method. In this case, the selected model was fit using all 
the samples except a single sample, and the prediction error of the model calculated in a 
similar fashion as described above.  
 
Step 2 
The second step in the analytical procedure was to apply the concentration model from 
Step 1 to a long-term continuous record of turbidity and precipitation data to estimate 
storm event loads. In the case of Guadalupe River, this consisted of 15-min observations 
spanning October 2002 to April 2014.  
 
To identify the data reflecting storm events, the presence of storms was assessed based on 
flow and precipitation criteria. All selected storm events required a peak flow of at least 
500 cfs.  The start of an event was defined by flow rising above 150 cfs (or cumulative 
precipitation >0.1” if baseline flow was already >150 cfs), and the end by flow dropping 
below 150 cfs, or no rainfall at either CSJ or LP stations for 2 and 7 hours, respectively 
(enough time for surface runoff from either area to reach the monitored station). For the 
purposes of this analysis, flow that did not meet these criteria was deemed base flow.  
 
Following the storm selection criteria, predicted PCB concentrations and their respective 
standard errors comprising each set of flagged storms were converted to instantaneous 
loads. As the predictions were generated on a natural log-scale, both the predicted values 
and the standard errors were back-transformed for the loads calculation. The back-
transformation included a bias correction factor (BCF) following the method of Newman 
(1993). Specifically, the residuals of the selected model were used to calculate the mean-



 

 9 

square-error (MSE), and subsequently the BCF = MSE/2. The re-transformed values were 
then converted to loads by multiplying concentration by discharge, and the instantaneous 
loads summed for all predictions comprising an event to determine ‘event loads’. Seventy-
five storms were identified through this method, and reflect the data employed in the trend 
model analysis in Step 3. 
 
Two calculations were performed to propagate the standard errors generated from the 
concentration predictions into the event load derivation. First, the standard errors in 
predicted concentrations was added to the error in discharge measurements (assumed to 
equal 10%) to determine the error in instantaneous PCB loads, according to the ‘simple 
rule of product and ratios’ from Kirchner (2001):  

 
Next, the instantaneous load error estimates were summed for all estimates comprising the 
same storm to derive the error in event loads, following the ‘simple rule for sums’ from 
Kirchner (2001): 

 
In the following step, the PCB event loads resulting from the procedure above were used as 
the dependent variable in the statistical trend test. Both the event loads and corresponding 
standard errors were then employed in the power analysis procedure that followed.  
 
Step 3 
The third step in the modeling procedure involved testing support for a suite of regression 
models that best describe the relationship between PCB event loads over time (referred to 
as the trends model). Here, the goal of the model testing was to determine the significance 
of inter-annual trends in event loads after accounting for predictor variables associated 
with discharge and other sources of event variability (e.g., seasonality). Variables 
considered for the development of the trends model are listed in Table 5. Notably, turbidity 
and discharge were discounted from consideration in this step, due to concerns about their 
utility in models applied to future years, as they may be response variables directly 
impacted by management actions (e.g., reductions in sediment load or peak discharge 
through BMPs).  Similar to Step 1, the evaluation of models followed a Maximum Likelihood 
Approach, with the AIC statistic, AICc weights, statistical significance, and minimum 
number of parameters forming the basis for model selection.  
 
The general equation of the regression model was:  
 

 

 
Where, ln(PCBLoads) is PCB event load in natural log units, A0 – A2 are fitted coefficients of 
the model, Xi values are alternative raw or transformed predictor variables, Ti values are 

ln(PCBLoads) = A0+ A1ln(Xi)+ A2Ti+e
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time variables representing month (categorical), season (categorical), and/or water year 
(continuous), and ε is the unexplained variation (residual error).  
 
For the model development and testing, the mean estimate of PCB loads for each storm was 
the dependent variable used in the models. For selected models, statistical and graphical 
residual analysis and cross validation experiments (k-fold and LOOCV) to assess errors in 
the model was performed using the same general methods described for Step 1.  
 

Composite Sampling Strategy 

A key assumption of the modeling framework described above, is that a grab-based 
methodology will be used to characterize loads in the future, and high-resolution flow and 
turbidity data are available. To evaluate other sampling options, a parallel analysis was 
performed to simulate an alternative sampling strategy involving the collection of event 
composite samples. However, as composite samples have yet to be collected in the 
Guadalupe River, a simulation approach was employed to generate ‘synthetic’ composite 
loads for use in a trend model evaluation. The details of the analysis to generate synthetic 
loads are described in Appendix F in this report.  
 
Development of a composite-based trend model took the same general form as the grab-
based load regression model described previously in Step 3. Here, the dependent variable 
was loads estimated from synthetic composites by a linear interpolation of grab 
concentrations rather than the loads estimated by the regression model. Additionally, there 
are two major differences to the grab-based loads method: 1. Storms with a single collected 
grab were not considered in composite model calibration, and 2. Only loads for storms with 
more than one collected grab were estimated for development of the composite trend 
model (vs. the grab-based method, for which loads for ALL storms in sampled water years 
are extrapolated from the turbidity and climate factor relationships derived from the 
subset of sampled storms). 
 

Power Analysis 

Following selection of trend models for the grab- or composite-based methods, Monte 
Carlo simulations were developed to test the statistical power for determining declines in 
loads with the models, assuming varying levels of trend over 20 years. Here, ‘Power’ is 
defined as the probability of detecting a trend of a certain magnitude during a specified 
monitoring period (years), where a Type I error rate (α) is set at 5%1. Assuming this 
definition, a power analysis procedure was developed to test the likelihood of detecting 
significant inter-annual trends based on future scenarios of storm sampling. The goal of the 
analysis was to determine the statistical power associated with detecting significant inter-
annual trends using the selected trend model based on several sampling designs and 
magnitudes of PCB change (Appendix B).  

                                                        
1 A Type I error rate of 5% is conventional practice but is biased toward avoiding “false positives”.  Type I error rates of 10 - 20% might 
be more appropriate for environmental trend applications where the risk of false positives should be balanced with the risk of false 
negatives. For this study, we used the conventional 5% error rate as a starting point. Increasing the Type I error rate would have the 
effect of increasing the power to detect trends. 
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Sampling design simulations were developed by assuming that 1) future concentrations 
and loads will be sampled in the same manner as the current data, and 2) the distribution 
of storm events (number, timing. and magnitude) will be similar in the future. 
Subsequently, geometric trends of 10% to 90% decline over 20 years were imposed to the 
data by year. In the grab-based designs, PCB concentrations for the sequence of future 
years were simulated based off the original set of grab samples. For the composite-based 
sampling strategy, a similar approach was used except simulations were based on the 
calculated composite loads using the linear interpolation approach described in Appendix 
F.  
 
To simulate grab/composite data for 20-years, concentrations/loads were repeated from 
the 12-year dataset, maintaining their original sequence including missing years of data. 
This methodology resulted in 56 storms over 20 years for grab-based simulations and 32 
storms over 20 years for composite-based simulations. To simulate sampling at lower 
levels of effort to the previously sampled storms (e.g., 75% of 56 storms) a random 
selection of those storms were sub-sampled from the 20 year pool of simulated storms 
(250 trials per level of effort) and propagated through Steps 1 and 2 in the model approach 
to generate estimated event loads and standard errors. Subsequently, Monte Carlo 
simulations (400 runs) of the trends model (Step 3) were conducted using the estimated 
event loads and associated standard errors in loads. In the composite approach, since no 
model error in loads estimation was calculated, two standard error estimates were tested 
to bridge the expected range in composite load error; 5% and 30%. The estimated 
statistical power for each sampling design was calculated as the mean proportion of MC 
simulations (250 sample sets x 400 runs) where a significant water-year term was detected 
with the corresponding trend model.  

Results and Discussion 
 

Data Evaluation 

Figure 1 summarizes the PCB concentrations, turbidity, and particle-ratio concentrations 
determined from grab storm samples collected at Guadalupe River used in statistical 
modeling. PCB concentrations and turbidity were most variable during the ‘wet’ water 
years (particularly, 2003 and 2005), as well as during 2012, and lower during the ‘dry’ 
water years, such as in 2006, 2010, and 2013. This is illustrated in the PCB data normalized 
to suspended sediment (i.e., particle ratio concentration), where mean concentrations 
appear relatively consistent over time, with few events in the time series having more 
variable particle ratio concentrations.  
 
Table 1. Predictors Tested in PCB Concentration Models 
Parameter Transformation Type Guadalupe River 

Turbidity Natural-Log Continuous variable Default predictor in all 
models 

Accumulated Rainfall 
Year-To-Date 

Natural-Log Continuous variable Upper, middle, lower 
watershed USGS gauges 
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Rainfall Intensity Natural-Log Continuous variable Upper, middle, lower 
watershed USGS 

gauges1 

Season N/A Categorical variable Early or Late2  

Month N/A Categorical variable October to March 

Water Year Raw  Continuous variable; 
mean centered 

2003-2006, 2009-2010, 
2012-2014 

1
 30 min-7 hr lagged rainfall with 30 min-2 hr antecedence for each gauge; 

2
 Early/Late Season = season-

to-date rainfall less than/greater than 50% mean annual rainfall 
 

 

Concentration Model 

The first step in our model evaluation was to construct linear models to predict PCB 
concentrations as a function of turbidity, accumulated rainfall, rainfall intensity, seasonal, 
intra-annual, or inter-annual variability (Table 1). Several climatic variables related to 
discharge and precipitation indicated linear relationships (Figure 2). It should be 
acknowledged that a discharge parameter was discounted from consideration in the final 
tested models because it is a component of the loads calculations in Step 2. However, as 
precipitation and discharge are correlated, this influence on PCBs has to a certain extent 
been accounted for in the tested parameters. All models included turbidity as the primary 
predictor variable.  
 
Forty-four models were examined for Guadalupe River. Summary statistics for the top five 
models in addition to the turbidity model are shown in Table 2. None of the top models 
differed greatly in the amount of explained variation (R2 = 0.781 – 0.811). However they all 
represent a significant improvement in R2 relative to the Default model that related 
concentration to turbidity alone (R2 = 0.519). Two models were selected where all model 
terms were statistically significant; Model 42 and Model 21 (highlighted in gray on Table 
2). These two models consisted of five (Model 21) and six (Model 42) statistically 
significant predictor variables each; turbidity, rainfall indicators for the upper and lower 
watershed, and a temporal term for season. The only difference was the inclusion of a 
polynomial term for one of the rainfall indicators in Model 42. These two models were 
further scrutinized in residuals analysis prior to final model selection. 
 
Diagnostic plots of the residuals of Model 42 and 21 suggest that both models conform to 
assumptions of normality and homoskedacity (Appendix C). The normal Q-Q plots 
correspond to a relatively straight line (suggesting normality) and there did not appear to 
be major outliers based on the Cook’s distance plot. The inferences were supported 
through statistical tests for normality (Shapiro-Wilk test) and homogeneity of variances 
(not presented), and plots of residuals vs. fitted values and fitted values vs. standardized 
residuals (i.e., residuals divided by its standard error). The graphical assessment indicated 
residuals that span the range and did not point to highly skewed values or non-random 
errors in the predicted values.  
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Figure 1. Guadalupe River PCB Concentrations, Turbidity, and Particle Ratio 
Concentrations by Water Year. Widths of boxes are proportional to the square-root 
of the number of observations in each group 
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Table 2. Summary AIC Statistics for the highest ranked Guadalupe River PCB Models.  
All terms were significant (p < 0.05) in each model except for those terms shown in italics 
Model Parameters K AICc Delta 

AICc 
AICc
Wt 

Cum
.Wt 

Adj. 
R2 

Model 42 

Turbidity + 
30minLag:2hrSum[CSJ] + 
30minLag:2hrSum[CSJ]2 + 
7hrLag:7hrSum[LP] + Seasona 7 88.12 0 0.96 0.96 

 
 
 

0.811 

Model 20 

Turbidity + 
30minLag:2hrSum[CSJ] + 
4hrLag:4hrSum[ALM] + 
7hrLag:7hrSum LP] + Seasona 7 96.09 7.97 0.02 0.98 

 
 
 

0.791 

Model 21 

Turbidity + 
30minLag:2hrSum[CSJ] + 
7hrLag:7hrSum[LP] + Seasona 6 97.72 9.60 0.01 0.99 

 
 

0.783 

Model 43 

Turbidity + 
30minLag:2hrSum[CSJ] + 
7hrLag:7hrSum[LP] + 
7hrLag:7hrSum[LP]2 + Seasona 7 98.16 10.04 0.01 0.99 

 
 
 

0.786 

Model 23 

Turbidity + 30minLag: 2hrSum 
[CSJ] + 7hrLag: 7hrSum[LP] + 
Season1+ Turbidity* Seasona 7 99.75 11.63 0 1 

 
 

0.781 

Model 1 Turbidity 3 157.85 69.72 0 1 0.519 
a
 Jan/Feb vs. all other months (categorical; 2 levels) 
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Figure 2. Relationships Between Climatic Variables and PCB Concentrations at 
Guadalupe River  
 

 
 
 
Table 3. Summary Statistics For Model 21 Relative to the Default Model 
Model Model Parameters K Adj. R2 Pred. 

R2 
RMSE PRESS 

21 Turbidity + 
30minLag:2hrSum[CSJ] + 
7hrLag:7hrSum[LP] + Season 

7 
 

0.78 
 

0.78 
 

0.41 
 

15.2 

1 Turbidity 3 0.52 0.51 0.62 32.5 
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Table 4. Coefficients for Proposed Guadalupe River PCB Concentration Model  
(Model 21) 
Model Parameters Estimate S.E. t-value p-value 

Intercept 6.681 0.387 17.27 < 0.0001 

Turbidity 0.802 0.066 12.23 < 0.0001 

30minLag:2hrSum[CSJ] 0.311 0.049 6.32 < 0.0001 

7hrLag:7hrSum[LP] -0.143 0.040 -3.59 0.0006 

Season -0.422 0.103 -4.09 0.0001 

 
Given the similarity in the results of Models 21 and 42, the simpler model formulation of 
Model 21 (without polynomial terms) was chosen to proceed with. Summary statistics of 
the selected model are shown in Table 3. Clearly, Model 21 exhibits relatively higher model 
R2 and predictive R2, and lower RMSE and PRESS statistics relative to Model 1 (the Default 
model).  
 
Residuals were plotted against water years and months to examine temporal structure in 
the unexplained variance. If any systematic temporal trend in the residuals vs. time were 
observed, it would invalidate the subsequent test using the trend model. The residuals 
against water year were relatively well distributed around zero during the earlier period of 
sampling and 2014, but deviated in 2012 and 2013 (Figure 3). Although the residuals for 
samples collected during these years appeared higher and lower, respectively, relative to 
other years, this apparent difference was not statistically significant when tested by 
regression (not presented). Similarly, November events tended to have lower residuals 
than other months, but this difference was not statistically different.  
 
To further explore whether model error patterns can be explained by event-scale variation 
not already captured in the selected predictors, the residuals were plotted against two 
intermediary climatic response variables (specifically, observed discharge and suspended 
sediment concentration). These graphical analyses indicate the model residuals are 
randomly distributed with respect to these response variables (Figure 4). None of the 
linear regressions of residuals against flow or SSC were significant (not presented). 
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Figure 3. Guadalupe River PCB Concentration Model 21 Residuals Plotted Against 
Water Year (A) and Month (B). Points reflect residual values, and the regression line 
resulting from a linear model of residuals against water year or month. Both regression 
slopes were not significantly different from zero. 
 
A) 

 

B) 
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Figure 4. Guadalupe River PCB Concentration Model 43 Residuals Plotted Against 
Flow and Suspended Sediment Concentrations.  
 

 
 

 
 
Next, cross-validation methods were conducted to examine estimates of model error and 
the robustness for making predictions with an independent dataset. Two common methods 
were applied; Leave-One-Out (LOOCV) and k-fold cross validation (with k = 5). The cross 
validation results of both methods on the two selected models were similar (Appendix D). 
Had there been a large difference in RMSE or R2 it may have been concluded that the 
models were overfitting the data, which could lead to more spurious predictions.  
 
Finally, the predictions from Model 21 were plotted against the observed PCB 
concentrations. Figure 5 shows the majority of Guadalupe River data are predicted 
reasonably well by the model, with few samples showing large deviations from observed 
values.  
 

Storm Selection 

The next step in the analysis was to use the selected concentration model to predict PCB 
concentrations from wet season turbidity and rainfall data across the entire period of 
sampling in the watershed (2003-2014). Note that since the grab sample dataset that 
formed the basis of the model only contained samples from October to March to generate 
the seasonal variable in the selected model, only concentrations for those months in the 
dataset could be predicted. Therefore, predictions for data records in April and May of each 
water year was not performed due to concerns over extrapolation beyond the range in the 
data (un-sampled months or years). 
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Fig 5. Guadalupe River PCB Concentration Model 21. Relationship between predicted 
and observed grab samples. Predicted concentrations were back-transformed to 
ng/L 
 

 
 
Subsequently, storm selection criteria based on peak flow, minimum flow, and 
precipitation were applied to the continuous record to determine ‘storm events’ to use in 
the development of the trends model. Figure 6 summarizes the peak flow for the selected 
storms (n = 75). Generally, the discharge during events in any single year had a median 
around the selected minimum peak flow of 500 cfs. However, 2003 was associated with 
much more variable and higher storm flows, while the more recent years were drier, with 
many storms exhibiting flows that were generally less than 500 cfs, (except at peak flow). 
These features of the dataset further support the need for the trend model to explain 
climatic response patterns in PCB loads. 
 

Loads Calculation 

The 15-minute predicted concentrations at Guadalupe River associated with these 75 
storms were converted into loads by combining the modeled concentrations with 
measured flow obtained from the USGS gauge (11169025) on the lower Guadalupe River. 
Figure 7 shows the subsequent propagation of the prediction errors from predicted (15-
minute interval) PCB concentrations to event loads from this step in the analysis. The 
storms that exhibited less precision were those with predicted event loads greater than 
100 g per event. For example, the highest PCB load was estimated for a storm on 12/19/03 
that exhibited an event load of 461.3 ± 30.4 g (Storm # 3). Generally, individual storms with 
event loads less than 50 g exhibited errors of approximately 5% of the event load estimate.  
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Trends Model 

The final step in the statistical analysis procedure was to evaluate models that test for 
significant temporal trend in event loads, while accounting for the relative influence of 
climatic parameters (e.g., related to antecedence, accumulated rainfall and individual storm 
lagged rainfall indicators, Table 5). Twenty-five predictor variables were selected for 
testing, which yielded 44 regression models that were examined for AIC statistics and 
statistical significance, in the same manner as in Step 1. Additional complexities to the 
model structure were also considered such as using polynomial terms and interactions.  
 
Table 5. PCB Trends Model Parameters Explored 
Category Transformation Type Parameter 

Accumulated 
Rainfall 

Natural-log Continuous variable YTD at City San 
Jose [CSJ] or Loma 
Prieta [LP] rain 
gauges  

Lag Rainfall Square-root Continuous variable CSJ 30min Lag or 
LP 7hr Lag 

Max Rainfall Raw Continuous variable CSJ or LP 1 to 6 hr 
max 

Antecedence Square-root Continuous variable CSJ or LP 1-day, 7-
day, 14-day 

Storm Flow 
Duration 

Natural-log Continuous variable Length of storm 
(days) 

Inter-annual Raw Continuous variable; mean 
centered 

Water Year (2003-
2014) 

Season N/A Categorical variable; 
Jan/Feb vs. other months 

Month (Oct-Mar) 

 
  



 

 21 

Figure 6. Peak discharge (natural log of peak in cfs units) for storms selected for the 
trends model.  
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Figure 7. PCB Loads (+/- standard error) for Storm Events in Guadalupe River (N = 75; 2003-2014). Estimated loads 
and standard errors were determined from predictions and errors of the concentration model, and assume a 10% standard 
error in discharge. 
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Table 7. Guadalupe PCB Trend Modeling AIC Statistics. Only for Model 30 were all terms significant (p < 0.05). Not 
significant model terms are shown in italics 
Model Parameters K AICc Delta 

AICc 
AICc
Wt 

Cum.
Wt 

Adj. 
R2 

Pred. 
R2 

RMSE PRESS 

Model 34 

30minLag:2hrSum[CSJ] + 
7hrLag:7hrSum[LP] + 
3hrMax Rainfall[LP] + 
StormFlowDuration[CSJ] + 
Season + WaterYear 8 100.4 0.00 0.36 0.36 

 
 
 
 

0.86 

 
 
 
 

0.84 

 
 
 
 

0.42 

 
 
 
 

16.1 

Model 35 

30minLag:2hrSum[CSJ] + 
7hrLag:7hrSum[LP] + 
3hrMax Rainfall[LP] + 
StormFlowDuration[CSJ] + 
StormFlowDuration[CSJ]2 +  
Season + WaterYear 9 100.6 0.26 0.32 0.68 

 
 
 
 
 

0.86 

 
 
 
 
 

0.84 

 
 
 
 
 

0.41 

 
 
 
 
 

16.0 

Model 36 

30minLag:2hrSum[CSJ] + 
30minLag:2hrSum[CSJ]2 + 
7hrLag:7hrSum[LP] +  
3hrMax Rainfall[LP] + 
StormFlowDuration[CSJ] +  
Season + WaterYear 9 100.7 0.29 0.32 1.00 

 
 
 
 
 

0.86 

 
 
 
 
 

0.84 

 
 
 
 
 

0.41 

 
 
 
 
 

16.2 

Model 32 

30minLag:2hrSum[CSJ] + 
30minLag:2hrSum[CSJ]2 + 
7hrLag:7hrSum[LP] +  
3hrMax Rainfall[LP] +  
Season 7 124.0 23.6 0.00 1.00 

 
 
 
 

0.80 

 
 
 
 

0.77 

 
 
 
 

0.50 

 
 
 
 

23.0 

Model 30 

30minLag: 2hrSum [CSJ] + 
7hrLag: 7hrSum [LP] + 3hr 
Max Rainfall [LP] + Season 6 125.3 25.0 0.00 1.00 

 
 

0.77 

 
 

0.80 

 
 

0.50 

 
 

23.0 
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Figure 8. Guadalupe River Trends Model 34 Residuals Plotted Against A) Water Year 
and B) Month. Points are residuals, and the regression line resulting from a linear model 
of residuals against water year or month. Both regression slopes were not significantly 
different from zero. 
 
 
A) 

 

B) 
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Figure 9. Guadalupe River Trends Model Residuals Plotted Against Flow and SSC for 
each corresponding storm employed in the trend model 
 

 
 
Statistical testing of 44 generalized linear models indicated three models with the highest 
likelihood of ‘best’ describing PCB event loads; Model 34, 35, and 36 (Table 7). They all 
consist of at least two continuous climatic factors from the lower and upper watershed 
gauges (San Jose and Loma Prieta, respectively), a categorical variable for season, and 
continuous inter-annual trend. Models 35 and 36 differed from Model 34 by the addition of 
polynomial variables (not significant in either case). In all cases the water year term was 
also not statistically significant (Table 9). Following the same rationale of the concentration 
model, the simplest model with the highest number of statistically significant model terms 
was selected. In this case, Model 34 fit these criteria and was also the highest ranked based 
on AIC statistics, and thus was selected as the proposed trends model for Guadalupe River. 
In Figure 8, it is evident there is no remaining seasonal or interannual trend to the 
residuals over time. Model residuals also passed formal testing for normality and 
homoscedasticity (Appendix E).  
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Table 8. Coefficients of Proposed Trend Model for Guadalupe River (Model 34) 
Model Parameters Estimate S.E. t-value p-value 

Intercept 2.11 0.18 11.9 < 0.0001 

30minLag:2hrSum[CSJ] 1.23 0.14 8.50 < 0.0001 

StormFlowDuration[CSJ] 0.69 0.12 5.76 <0.0001 

7hrLag:7hrSum[LP] -0.79 0.24 -3.33  0.001 

3hrMaxRainfall[LP] 1.63 0.25 6.48 <0.0001 

Season -0.67 0.11 -6.24 < 0.0001 

Water Year 0.02 0.01 1.13 0.260 

 
Regression of the model residuals to discharge and SSC (Figure 9) suggest that Model 34 
has largely captured the variation at event-scales, as both the positive and negative 
residuals span the range in flow and SSC conditions. At the highest flow and SSC events the 
residuals indicate some heterogeneity, exhibited by more positive residuals. This would 
reflect an under-prediction of event loads under those conditions. Linear regressions of 
peak SSC (slope = 0.26, R2 = 0.17, p = 0.0002) and peak flow (slope = 0.30, R2 = 0.17, p = 
0.0003) against the residuals were both significant. These apparent differences are not 
manifested directly in the predicted PCB loads, however, as there was no statistical 
relationship (slope = 0.002, R2 < 0.01, p = 0.96) between predicted loads and the residual 
error from the trend model. 
 
Two cross-validation experiments were conducted to examine estimates of model error. As 
in Step 1 of the analyses, two common methods of CV were applied; Leave-One-Out 
(LOOCV) and k-fold cross validation (with k = 5). As shown in Table 7, the RMSE estimated 
during the development of the model was 0.43. Based on both the LOOCV method and k-
fold CV, the RMSE was estimated at 0.47. There were also only minor differences in R2, with 
LOOCV indicating R2 = 0.814 and k-fold CV of 0.859. These estimates were very similar to 
the R2 and adjusted R2 for the model, 0.850 and 0.835, respectively. The lack of large 
differences in RMSE and R2 in cross validation relative to the model, suggests that the 
model is not over-fitting the data. 
 
To finally demonstrate the current slope of trend in PCB loads, the predicted event loads 
were summed to determine the annual storm loads and associated standard errors for 
yearly estimates. Figure 10 illustrates that despite relatively high PCB loads during the 
earlier years of monitoring (Figure 7), there is a lack of trend in the residuals of the trend 
model. This means that that any apparent trend in the loads data over time can be 
accounted for by climatic factors.  
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Figure 10. Regression of water year vs. residuals of proposed Guadalupe River trend 
model (all variables except water year included). Slope of 0.00 confirms the lack of 
linear trend in loads over time. 
 

 

 
 

Power Analysis 

Simulations were conducted to test the power for detecting trends in PCB loads assuming 
either grab-based or composite-based sampling designs. Grab simulations were conducted 
based on sampling between 18 (33% of past effort) and 56 storms (100% of past effort) 
over 20 years, with an average of 3 grabs collected on each event. In comparison, the 
composite simulations tested sampling a single composite per storm between 16 to 32 
storms over 20 years, or 50% to 100% of past sampling effort.  For each of the scenarios, a 
given annual rate (geometric) change of interest (ranging from 25% to 90% net decline in 
20 years) was imposed on the past sequence of empirical data, and the grab or composite 
load calculation methodology re-applied to the hypothetical empirical data, subsampled at 
different levels of effort. 
 
For the grab sampling designs, power curves indicate that most trends of interest would 
exhibit high statistical power. Inter-annual trends of 25% or more would be detectable 
with > 80% power when sampling 28 storms (50% effort) over 20 years (Figure 11). This 
design would equate to sampling at least 2 storms in 13 out of 20 years. During those 13 
years, 4-6 grab samples are assumed to be collected during each storm as performed in the 
current sampling methods.  In all grab-based sampling designs (i.e., 33-100% effort) the 



 

 28 

power to detect imposed trends of 90% decline over 20 years (the TMDL target) would be 
100%. 
 
For the composite scenarios, power curves indicate that only larger trends of interest 
would be detectable with high power. Sampling of 24 storms (75% effort) in 20 years 
would be sufficient to detect trends of 75% or more (Figure 12). Similar to the grab design, 
this suggests approximately 2 storms per monitoring year, assuming 13 of 20 years are 
sampled. In the composite-based sampling designs, the power to detect trends of 90% over 
20 years (the TMDL target) would be 100% if at least 16 storms are sampled and the 
assumed error in loads is 5%. Under the higher variance scenario (30%), only the design 
for 100% effort (32 events in 20 years) would attain 80% power. 
 
Finally, to test the power of the grab-based methods under more variable conditions (e.g., 
with concentrations less reliably predicted by turbidity and climatic factors), the sampling 
designs were re-tested assuming an inflated variance in the sample data. Assuming random 
error was increased by +/- 20%, the size of trend that could be detected with > 80% power 
at either 50% or 100% effort was approximately the same as with the original analysis 
(Figure 13). However, if random variability increased to +/- 50%, the size of detectable 
trend with > 80% power and 50% sample effort would increase to 50% or greater declines. 
 
Figure 11. Power Curves for Grab Sampling Design Scenarios 
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Figure 12. Power Curves for Composite Sampling Design Scenarios. Scenarios with 
solid lines include a 5% standard error in loads; dotted lines include a 30% standard error 
in loads. 
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Figure 13. Power Curves for Grab Sampling Design Scenarios Including an Inflated 
Random Error. Scenarios with solid lines include +/-20% random error, while dotted lines 
include +/-50% random error. 
 

 

Conclusions 
 
The statistical analysis approach developed in this project has shown the potential for 
minimizing error associated with estimates of PCB loads by accounting for major sources of 
variability in climatic response. Applying the statistical model to the Guadalupe River data 
supports earlier reports that document a lack of significant inter-annual trend in PCB loads 
(McKee et al. 2017). The power analysis results indicated that there is a relatively low 
chance of concluding that there is a significant trend with the modeling approach under the 
null hypothesis (lack of a trend).  
 
The key feature of the trend model procedure is that it tests for a change in loads after 
accounting for climatic variability. An apparent decrease in loads in the Guadalupe River 
from the early, wet years of the dataset to the more recent, drier years was found to not 
constitute a significant trend after explicitly accounting for rainfall amount and timing in 
the watershed. This feature of the model is critical to the conclusion of whether a statistical 
trend may exist in the future. For example, if there were a trend in PCB loads in the future 
caused solely by changes in climate, the trend model would continue to support the result 
of ‘no trend’. However, if climatic factors followed a new pattern of more frequent rainfall, 
which cannot be accounted for solely using the existing trend model factors, the conclusion 
from the trend test may be different. As a result, future scenarios may arise where PCB 
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loads decline due to management changes, but overall, loads are actually increasing due to 
increased rainfall patterns. Thus, the influence of shifts in climatic patterns on the trend 
model will warrant consideration in future analyses.  
 
Another important aspect of the statistical approach was the use of storm selection criteria 
to select storms for testing with the trend model. This approach increased the sample size 
for modeling by encompassing all storms. However, by definition the method assumes that 
the conditions of all selected storms in the dataset behave in the same manner as the 
sampled storms. This assumption is likely an oversimplification of the behavior of loads in 
the watershed.  
 
The power analysis work further showed that the grab-based model approach exhibited 
higher power for detection of trend over composite methods. The power simulations 
showed that a 20-year monitoring program where at least two storms are sampled in 65% 
(13 of 20 years) of the time series would have high statistical power to detect a 25% or 
greater declining trend in PCB loads. The simulations indicate that the higher sample size 
and relatively low standard error of load estimates of the grab-based methodology holds 
promise for detecting trends of management interest in the future. Such an approach could 
be useful to verify relatively small future changes at Guadalupe River over time, or at a 
select number of other watersheds where such methods can be applied. 
 
In the event that high frequency turbidity data are unavailable in the future, and load 
estimates are based on event-composite samples, it is likely that a 20-year program will 
lack the statistical power to detect smaller changes in loads over time. Using the composite-
based trend model presented in this study, it appears that declines of 75% or more over 20 
years would be detectable, unless a greater frequency of storms are sampled during 20 
years than were assessed here (i.e., focusing on capturing more storms with fewer samples 
or only a single composite per storm). 
 
Finally, the current modeling framework is based on the empirical response of the 
watershed to past climate drivers. Since the distribution patterns of climate drivers, and 
watershed characteristics (current land use distribution, imperviousness, soil and stream 
bank erodibility, among other factors) may change over time, it is important that future 
efforts to employ the model framework consider the potential for future changes due to 
uncontrollable driving factors, as opposed to response factors that may be directly or 
indirectly managed or mitigated (e.g., watershed efforts to reduce or increase suspended 
sediment supply from various areas or sources). Additionally, the statistical approaches 
presented have the potential to optimize future parameter estimates for improved annual 
loads estimation, and detection of future trends in loads. Yet, given the scope of the study, it 
would be premature to generalize the trends model for Guadalupe River to other Bay Area 
watersheds. Therefore, future efforts will also need to examine the utility of designing 
similar trend models and supporting power analysis scenarios for other individual 
watersheds. The case study for Guadalupe River has shown that by employing high 
frequency turbidity and concentration data, there is the potential to separate climatic 
responses from inter-annual trends.  
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The final step towards selecting a preliminary monitoring design for the Guadalupe River 
(or other target STLS watersheds) was to evaluate the cost-effectiveness of the various 
sampling approaches at levels of sampling intensity indicated by the power analysis. 
Appendix G presents cost scenarios for both grab-based and composite-based methods; 
assuming grab sampling in 10 years over a 20 year period with 4 storm events/year and 4 
grab samples/storm; or composite sampling in 12 years over a 20 year period with 2 storm 
events/year. 
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Appendices 
 

Appendix A. Steps in developing predictors for modeling PCB concentrations from 

limited storm water sampling 

 
1) Literature review – turbidity has been used as a surrogate for: 

 Mercury (Quémerais et al. 1999, Wall et al. 2005, David et al. 2009, Ruzycki et al. 
2011, Riscassi and Scanlon 2013, David, et al. 2015, McKee and Gilbreath 2015) 

 PCBs (David et al. 2015, Gilbreath and McKee 2015)  
 

2) Parameter development and selection - Stratified the data into subsets: 
 Lag times,  
 Rainfall intensity 
 Timing (early/later, rising/falling) 
 

3) Also considered conceptual models in relation to: 
 Source homogeneity 
 Wetting and drying 

 
4) Sought terms that would impact processes 

 Washout/exhaustion effect on source  
 Short term- rising falling stage 
 Early or late wet season (antecedent rain) 

 
5) Types of factors 

 Site Observations 
i) Define hydrograph peak to categorize rise/fall 

 Calculated values 
i) Cumulative precipitation threshold for early vs. late season 
ii) Event cumulative precipitation (event antecedent rain, e.g., hours to days) 

 
6) For Guadalupe River, also attempted to convert rainfall into a % urban source surrogate 

 #1 = concurrent rainfall at 3 gauges, ratio urban/total 
 #2 = 0.5hr lag of 2hr sum urban, 4 & 4 mid, 7 & 7 upper watershed 
 #3 = #2 but average per ¼ hour (/8, /16, /28 of #2 components) 
 #3.5 = #3 with area and runoff coeff weights for low/mid/up 
 #3.6 = #3.5 but 1, 2, 4 hr avgs (same lags) 
 #3.7 = like 3.6, but 2, 3, 4 hr avgs, 0.5, 3, 5 hr lags for low/mid/up 
 Denominators of #3 to #3.7 are time averaged rainfalls with lags 
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Appendix B. Example representation of geometric declining trends tested in power 

analyses.  

 
Points represent years when sample data were simulated based on the pattern of sampled 
years in the current Guadalupe River dataset 
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Appendix C. Guadalupe River PCB Concentration Model Residuals 

 
Diagnostic Plots of Residuals – Model 42 
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Appendix C. (continued) 
 
Diagnostic Plots of Residuals – Model 21 
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Appendix D. PCB Concentration Model Cross Validation Results 

 
CV Method Model RMSE 

Model 
R2 Model RMSE 

CV 
R2 CV 

LOOCV 
42 0.381 0.811 

0.411 0.794 

K-Fold 0.432 0.812 

LOOCV 
21 0.410 0.783 

0.436 0.768 

K-Fold 0.428 0.780 
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Appendix E. Guadalupe River Trends Model 34 

 
Diagnostic Plots of Residuals 
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Appendix F. Composite Scenarios 

 
Simulations of Composite Sampling Strategy 
 
Approach: 
 
A key assumption of employing the statistical modeling approach developed in this project 
is the use of multiple grab samples to characterize the PCB particle-ratio concentration of 
storms.  However, it is feasible that the STLS program may switch to a composite-based 
sampling approach in the future to lower analytical costs. Therefore, to evaluate a trend 
procedure in a composite-based sampling program, an alternative analytical approach was 
evaluated.  
 
In Step 1, composite samples were simulated, as prior composite data for PCBs have not 
been collected from the GR. Therefore, linear interpolation functions were generated 
between each pair of grab samples that have been collected. All storms were included 
where at minimum of two samples were collected (N = 19). 
 
In Step 2, the interpolation functions were applied to entire storm periods (using the storm 
selection criteria described in the Methods of this report), to determine the instantaneous 
PCB concentrations at 15 min time-steps. In order to extend the interpolation to the 
beginning and end of the storm window, the first and last grab sample concentration was 
assumed constant for each 15-minute time point (Figure F1). This step provided a 
consistent manner for selecting storm events for testing trend models. Subsequently, the 
PCB concentrations were converted to event loads, corresponding to the same storm 
periods as for the grab based approach.  
 
In Step 3, the estimated composite loads were employed in a trend model evaluation to test 
support for event-scale model parameters, same as for the grab-based methodology. The 
difference being that the number of storms used to test models was limited to just 
“sampled” storms (N = 19), not the entire pool of storms selected (N = 75).  
 
Upon consideration of AIC model statistics and results of residuals analysis, a proposed 
composite-based trend model was employed in a power analysis procedure. The goal of 
this analysis was to assess the statistical power for detecting trends under a composite 
strategy, where high-resolution turbidity data and grab sample concentrations are not 
feasible. The power analysis methods for both grab-based and composite-based sampling 
are described in the Methods. 
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Results: 
 
Figure F1. Example of the linear interpolation method to generate composite data 
(Steps 1-2). Red circles are the sampled grabs, and black circles are 15-minute sample 
intervals. Grab concentrations were interpolated between each pair of grab samples, and 
the interpolation function applied to every 15-minutes between sets of grabs. The 
interpolation method was used to estimate PCB concentrations every 15-minutes. 
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Figure F2. PCB event loads calculated by the grab-based regression (MLR Model) vs. 
composite method (N = 19).  There was a good relationship between the loads estimated 
from the two methods. Only one storm (12/19/02) is underestimated by the composite 
method relative to the regression model. These results suggest the linear interpolation 
functions are a relatively good fit to the storm loads.  
 

 
 

Figure F3. Composite Trend Model 1 Residuals. The regression line is the slope of the 
water year term (-0.05, p=0.20). This slope illustrates the shallow non-significant decline to 
the composite loads.  
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Table F1. “Best” Trends Models for the Composite Data. These were the only models 
where at least one significant model term was found. In both cases, a non-significant 
declining slope was also indicated. 

 
  

Model  Model Parameters Adj. 
R2 

RMSE YEAR 
T-value  

(p-value) 
 

Pred. 
R2 

PRESS 
Statistic 

1 StormDuration[CSJ] +  
WaterYear 

0.59 0.62 -0.05 
(p = 0.202) 

0.51 9.8 

2 30minLag:2hrSum[CSJ] 
+  WaterYear 
 

0.54 0.62 -0.09 
(p = 0.056) 

0.46 10.8 
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Appendix G. Trends 20 Year Estimated Monitoring Budget 

 
Table G.1. Sampling scenario and assumptions for Guadalupe River trends budget 
estimate 
 

Trend 
decline 

detected Sampling scenario 
Sampling 

methodology Watershed Assumptions 

25% 

10 sampling years over a 20 
year period; sampling at least 
4 events/year; 4 grab 
samples/storm Grab 

Guadalupe 
River 

1. Set up turbidity and flow monitoring 
equipment 
2. Set up data telemetry 
3. Sample 4 medium duration storm 
events/year for 10 out of 20 years- 
focused on urban hydrograph 
4. Sampling only PCBs & SSC 
5. Assumes full DM every year 
6. Assumes full reporting every 5 
years & SPL PPT any year monitoring 
occurs 

75% 

sample 24 storms over 20 
years which equates to 2 
storms per year for 12 out of 
20 years Composite 

Guadalupe 
River 

1. Set up turbidity and flow monitoring 
equipment 
2. Set up data telemetry 
3. Sample 2 medium duration storm 
events/year - focused on urban 
hydrograph 
4. Assumes full DM every year 
6. Assumes full reporting every 5 
years & SPL PPT any year monitoring 
occurs 

 
 
 
Table G.2. Budget estimates for field, laboratory and grab and composite sampling 
over 20 year period at Guadalupe River.  Note this is a ballpark budget estimate with 
uncertainty in each line item.  A more accurate and robust budget will be developed 
should the project be considered for funding via the RMP or other program. 
 

Item Grab Composite 

Labor 20 year budget $947,000 $974,000 

4 full reporting efforts $140,000 $140,000 

PCB analysis $144,000 $22,000 

SSC analysis $18,000 $3,000 

ODCs $31,000 $27,000 

20 year total $1,280,000 $1,165,000 

Total Average/Year $64,000 $58,000 

 


