Item #5a

Guadalupe Small Tributaries Loads

Overview, Rainfall, Runoff, and Existing Contaminant Concentration Data and Loads Estimates

Lester McKee and Jon Leatherbarrow SFEI

Collaborators
MLML, AXYX, AMS, Texas, USGS, and RSL

Timeline

Start: Fall 2002

End: Fall 2005 (Pending funding)

Sampling: Winter (Nov-Apr) each year

Lab Analysis: Spring (Due July 1st) each year

Reporting: Summer (Due Oct 1st) each year

Geographic Location

Watershed facts

Area: 556 km² (200 mi²)
4th largest in Bay Area
5th largest Q

Subwatersheds: 5

Highest Point: Loma Prieta (1,155 m [3,790 ft])

Sampling Outline

- USGS daily suspended sediment loads (Larry Freeman)
- Real time turbidity probe set at 15 minute intervals (Rand Eads)
- Water sampling for trace contaminants and cognates (Hg, TM, PCBs, OCs, SSC, DOC & POC) (SFEI)
- Laboratory analysis
- a) Hg, TM, SSC: Mark Stevenson Moss Landing
- b) PCBs, OCs: Laurie Phillips AXYS Labs Inc.
- c) POC, DOC: Kenneth Davis Applied Marine Sciences, Texas

San Jose Rainfall

General Description

- Measurement began in 1898
- MAP = 368 mm (14.5 in)
- Annual variation = 147 768 or $\sim 5x$
- Nov-Apr = 89% MAP
- Inter-annual 40 200% MAP

San Jose Water Year 2003 Rainfall

397 mm (15.64 in)

103% of 30-year normal

1:3 year return interval

Rainfall Across the Watershed

Spatial MAP 350 - 1150 mm (14 – 45 in)

Maximum recorded P at Loma Prieta ~2000 mm (~80 in)

Alamitos and Guadalupe Creeks collect rainfall from the high peaks of Mt Loma Prieta and Umunhum and the adjacent ridges

Sources (USACE 2001

Guadalupe R. Discharge

1930 - 2000

- MAR = $110 \text{ mm} (42 \text{ Mm}^3 \text{ or } 34,050 \text{ acre-feet})$
- Annual variation = 1 638 mm (0.422 241 Mm^3) or $\sim 600x$

1971 - 2000

- MAR = $147 \text{ mm} (56 \text{ Mm}^3 \text{ or } 45,503 \text{ acre-feet})$
- Annual variation = $7 638 \text{ mm} (2.7 241 \text{ Mm}^3) \text{ or } \sim 88 \text{ x}$

Sub-watershed MAR

(Note we have requested but at present we have not received Q information from the District – i.e. a better analysis will occur in the final report)
Los Gatos Ck.

- MAR estimated from the 1945-52 record
- 59 Mm³ or 105% of 1971-00 Guadalupe MAR

Ross Ck.

- MAR estimated from the 1962-69 record
- 4 Mm³ or 7% of 1971-00 Guadalupe MAR

Alamitos Ck.

- MAR estimated from the 1931-57 record
- 25 Mm³ or 45% of 1971-00 Guadalupe MAR
- Guadalupe Ck. ??
- Canaos Ck. ??

Discharge Water Year 2003

Peak Q 6,160 cfs ~1:6 year return

2003 Q 55 Mm³ (~60 cfs) (~44,600 acre-feet)

97% of 30-year normal

Guadalupe River ~160 mi²

- Approximately 44% of the watershed is controlled by reservoirs that retain most sediment)
- Annual sediment load was estimated by USACE (1991) cited in USACE (2001) using data from "similar" drainages in the region with a range of 595 3,250 tons per mi² (average 2,100 tons per mi²). They assumed that only 50 mi² of the watershed was yielding sediment.

USACE estimate: 114,067 tons or 103,459 metric tonnes (Total sediment load)

Bed load 12,415 tonnes (12%)

Suspended load 91,044 tonnes (88%)

Coyote Creek near Gilroy 109 mi² (USGS 1962 - 70)

• 451 tons per mi²

San Francisquito Creek at Stanford 23 mi² (USGS 1962 - 69)

• 657 tons per mi²

Permanente Creek near Monte Vista ~3.9 mi² (USGS 1985 - 87)

• 4,680 tons per mi²

Existing Hg Concentration Data

Water column

• Thomas, Conaway, Steding et al., 2002 (Watershed)

Base flow 10/13/2000 Storm flow 10/26/2000 /10/27/2000

17 cfs 35- 117 cfs

 $0.019 - 0.086 \,\mu g/L \,Hg_{tot}$ $0.030 - 0.138 \,\mu g/L \,Hg_{tot}$

• Leatherbarrow et al., 2002 (Alviso Slough)

Base flow Storm flow

12 - 93 cfs 253 - 478 cfs

 $0.018 - 0.62 \ \mu g/L \ Hg_{tot}$ $0.06 - 0.73 \ \mu g/L \ Hg_{tot}$

Watershed Bed sediment

• Thomas, Conaway, Steding et al., 2002

 $0.38 - 33 \mu g/g Hg_{tot}$

Tetra Tech Inc. 2003 (Review)

 $< 0.1 - 730 \, \mu g/g \, Hg_{tot}$