SPLWG Meeting

Lester McKee SFEI September 2001

Main Outcomes From the May SPLWG Meeting

- **2002 Studies:** Asked to prepare scopes for 2002 pilot and special studies
- 2001 Workplans: RMP Special Studies II.1 (Develop and Refine Mass Budget Models) and II.4 (Development of a Sources, Pathways, and Loadings Monitoring Component) were approved, with guidance on details of the scope of the studies provided during the meeting
- GIS Mapping: Asked to prepare an "apples and oranges" GIS map of PCBs, and other pollutant data for the Bay and its watersheds
- Simple Model: Asked to prepare a budget for doing further analysis and refinement

Main Outcomes From the May SPLWG Meeting (cont)

- <u>Drainage Boundaries:</u> Lester was asked to produce a work plan and budget for getting improved drainage boundaries from Contra Costa, Alameda, Santa Clara, and San Mateo
- San Francisquito Creek: It was suggested that Lester should talk with Geoff Brosseau about the work on San Francisquito Creek
- Small Tributaries: We were asked to begin the literature review
- SPL Long-term Planning: Asked to begin considering a long term plan for SPL in RMP

Urban Runoff Conceptual Models

Model 1: The Watershed Water Budget

Model 2: Rainfall vs Runoff

Annual Runoff

Annual rainfall

Rainfall vs Runoff in the Bay Area

(Modified from Rantz 1974)

Rainfall/Runoff – Bay Area Facts

Mean annual precipitation (MAP)

- 90% falls Nov-Apr
- Varies spatially 305mm (12in) to 1.5m (60in)
- Single location varies from MAP–60% to MAP+100%

Mean annual runoff (MAR) (historic (Rantz 1974) or current)

- 97% runs off Nov-Apr
- Varies spatially 46mm (1.8in) to 483mm (19in)
- Single location varies from <2%MAP to 70%MAP

Model 3b: Impacts of Humans on Runoff Generation

Percent of the Watershed

Urbanized

The Effect of Urbanization on Runoff in the San Francisco Region (After Waananen et al. 1977)

Sediment Runoff Conceptual Models

Model 1: Sediment Budget

Contributing Lowland SF **Upland** Floodplain Bay Watershed **Sediment sources** River or Creek Channel Within channel storage Floodplain storage

Model 1: Sediment Budget

Variability of Suspended Sediment Loads in the Bay Area

SAN LORENZO CREEK ABOVE DO	ON CASTRO RESERVOIR (1981-2000)
Basin Area 18 sq mi	
Water Year	Suspended sediment load (Oct-Apr) (tons)
Number of complete data years	14
Minimun	499
Maximum	167013
Mean	32980
Variation	335
ALAMEDA C NR NILES, CA (1960	-1973)
Basin area = 633 sq mi	
Water Year	Suspended sediment load (Oct-Sep) (tons)
Number of complete data years	12
Minimun	3049
Maximum	287456
Mean	93928
Variation	94

Mercury Conceptual Models

Don Yee

Contaminant (Hg) budget conceptual model

Study Design Framework Conceptual Models

Model 1: The Watershed – Estuary System

- Budget models developed for the estuary can be used to determine:
 - magnitude of watersheds loads of concern
 - the accuracy needed for loads studies

- Spatial distribution of contamination in the estuary can help determine:
 - priorities for watershed loads determination
 - trends over time

Model 2: Loads Measurement in Watersheds

- Step 1: Map hydrography and boundaries (natural streams, storm drains, flood zones, tidal areas/wetland sloughs)
- Step 2: Map resources
 (land use, imperviousness, impairment indicators, BUs, geology, soils)
- Step 3: Estimate discharge
- Step 4: Measure chemical concentrations
- Step 5: Determine loads with appropriate accuracy
- Step 6: Test for trends and BMP effectiveness

Model 3: Management Initiatives

- Regionally coordinated and implemented (e.g. BASMAA / BACWA MOU)
- Management must make a decision on the spatial extent of the loads estimates
 Option 1: All watershed areas
 Option 2: Ten largest watersheds or priority watersheds?
- Study design should use methods that satisfy many of the environmental management questions
 (e.g. Environmental quality objectives, loads, trends, BMP effectiveness)
- Regional collection protocols, QA/QC, data management, data communication
- Regional and local data interpretation
- Regional peer review (design and interpretation/ report products)

2002 Special and Pilot Study Proposals

Delta Loads of Sediments and Contaminants

Background

- Suspended sediment data collected at Mallard Island is suitable for sediment loads analysis
- If coupled with contaminant data, contaminant loads could be determined for the central valley watershed

Methods

- Continue 15 minute optical back scatter (OBS)
- Collaborate with others and collect water samples and analyze for chemistry, SSC, and grainsize
- Relate SSC and contaminant concentration to OBS using regression
- Combine estimated SSC/contaminant concs with Dayflow

<u>Budget</u>

■ \$97k

Bay Margins Sediment Characterization

Background

- In spite of many efforts, there are still areas on the Bay margin that are downstream of urbanized, industrialized or agricultural watersheds whose degree of contamination has not yet been characterized
- Sediment is a natural integrator of conditions at the Bay margins and useful as an indicator of the degree of anthropogenic contamination from local watershed sources
- Methods
- Collect samples at 10 locations, once or twice during 2002
- Sediments will be analyzed for sediment chemistry and grain size

Budget

Sampling once \$40k; sampling twice \$55k

Loads from Small Tributaries and Trend Analysis

Two methods for consideration

Method 1:

OBS-Regressions and Trend Analysis

Background

- There is a renewed need to estimate loads and determine trends of key pollutants entering SF Bay from local small tributaries
- A loads estimates require methods that take account of hydrogeochemical processes
- The ideal trend indicator is unaffected by climatic variability

Methods

- Install and maintain optical back scatter (OBS) at a GSGS gauging station
- Collaborate with others and collect water samples and analyze for chemistry, SSC, and grainsize

Method 1 continued:

OBS-Regressions and Trend Analysis

Methods continued...

- Relate SSC and contaminant concentration to OBS using regression
- Combine estimated SSC/contaminant concs with USGS discharge
- Collect sediment samples just above the tidal zone in depositional areas and analyze for chemistry and grainsize
- Use normalization techniques to interpret the data now and in the future (time period to be determined using power analysis)

Budget

Existing location \$101k; new location \$151k

Method 2:

USGS Total Loads Stations:

Inclusion of Contaminants and Trends Indicator

Background

- There is a renewed need to estimate loads and determine trends of key pollutants entering SF Bay from local small tributaries
- A loads estimates require methods that take account of hydrogeochemical processes
- The ideal trend indicator is unaffected by climatic variability

<u>Methods</u>

- Begin a USGS Seasonal Total Daily Loads collection
- Collect water samples and analyze for chemistry, SSC, and grainsize

Method 2 continued:

USGS Total Loads Stations:

Inclusion of Contaminants and Trends Indicator

Methods continued...

- Relate contaminant concentration to SSC using regression taking into account grainsize effects
- Combine estimated contaminant concentrations with USGS discharge
- Collect sediment samples just above the tidal zone in depositional areas and analyze for chemistry and grainsize
- Use normalization techniques to interpret the data now and in the future (time period to be determined using power analysis)

<u>Budget</u>

First year \$128k; Subsequent years \$42k

Simple Model

Background

Good planning level tool for:

- Inventory
- Prioritization for new data collection
- Education
- Hypothesis for loads and relative changes over time
- May give accurate loads estimation under certain circumstances in spite of assumptions

<u>Issue</u>

Previous regional application was not conducted using the watershed and the base unit of area limiting past and future comparisons to loads estimates

Simple Model (continued)

Method

- Task 1. Develop load estimates for County areas, watershed areas, and areas for which there area previous load estimates and existing records of discharge
- Task 2. Make direct comparisons of new load and discharge estimates with other available load estimates
- Task 3. Present the results in figures, graphs and tables
- Task 4. Analyze the results to determine the circumstances under which the model performs well and poorly
- Task 5. Write a short report

<u>Budget</u>

\$30k