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Executive Summary 
 
 

The Regional Monitoring Program for Water Quality in the San Francisco Estuary 

(RMP or Program) evaluates the concentration of pollutants in a wide range of matrices. 

Trace metals and organic compounds are monitored in water, sediments, bivalves, and 

sport fish as part of the Status and Trends element of the RMP (SFEI 2005, 2006b). 

Periodically, the cost-effectiveness and statistical power of the major elements of the 

RMP are evaluated using power analysis in combination with an evaluation of the 

information needs and priorities of water quality managers.   

This evaluation of the Program was motivated by new understanding of bay 

processes (e.g., presence of phytoplankton blooms), changes in the regulatory focus from 

the water column to biota (e.g., bird eggs, sport fish and small fish), and significant 

management actions that may impact the Bay (e.g., large-scale wetland restorations). 

This report describes methods and selected findings for power analyses conducted in 

2006, and documents the rationale for Technical Review Committee (TRC) and Steering 

Committee (SC) decisions regarding the design of RMP Status and Trends monitoring. 

The objective of the power analysis was to evaluate whether current sampling size 

and frequency are appropriate for meeting the needs of RMP stakeholders, including the 

San Francisco Bay Regional Water Quality Control Board. Specifically, the statistical 

power analysis was conducted for two scenarios. The first scenario compared RMP data 

to thresholds.  This was analogous to the previous RMP power analysis (Lowe et al. 

2004), with the difference that updated thresholds and data were used. The second 

scenario evaluated the ability of the RMP random sampling design to detect long-term 

trends.  The analysis focused on pollutants that are of currently high management priority 
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for the Bay, which include polychlorinated biphenyls (PCBs), mercury (Hg), copper 

(Cu), and nickel (Ni). 

On the basis of power analysis results and other considerations, the TRC made 

recommendations for future monitoring of contaminants in the Bay. The power for Status 

and Trends matrices (water, sediments, bivalves, and sport fish) with the current 

sampling design and assumed rates of decline will be very high (> 95% in most cases). 

Furthermore, sport fish and bivalves appear to be the best indicators for trends. The TRC 

recommended that the sampling design for matrices other than sport fish be modified, due 

to adequate characterization of contaminant variability in these matrices for the majority 

of the Bay. Sport fish monitoring would achieve adequate power for trend detection, but 

due to high concentrations of PCBs (shiner surfperch and white croaker) and mercury 

(white croaker), the ability to distinguish concentrations below thresholds could not be 

achieved with the current design. Nevertheless, the TRC deemed the value of the current 

sport fish monitoring design to be very high, and suggested that modifications not be 

made. Finally, bird eggs such as of cormorants have previously only been monitored 

under special studies. A proposal for monitoring of bird eggs (cormorants and terns) 

every three years was supported by the TRC and SC.
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Introduction 

 

 The Regional Monitoring Program for Water Quality in the San Francisco Estuary 

(RMP) evaluates the concentration of pollutants in a wide range of matrices. Currently, 

trace metals and organic compounds are monitored in water, sediments, bivalves, and 

sport fish as part of the Status and Trends element of the RMP (SFEI 2005, 2006b). 

Additionally, contaminant concentrations in cormorant eggs (Davis et al. 2007b), 

mercury in tern eggs, and mercury concentrations in small forage fish have been 

monitored as part of special studies.  Periodically, the cost-effectiveness and statistical 

power of RMP elements are evaluated using power analysis in combination with an 

evaluation of the information needs and priorities of water quality managers. The 

previous redesign of the Program and power analysis, completed in 2002, resulted in 

substantial changes to the monitoring design (Lowe et al. 2004).  

 In 2006, the RMP Technical Review Committee (TRC) and Steering Committee 

(SC) undertook a review of the Program.  This review was motivated by a number of 

reasons including: changes in our understanding of Bay processes (e.g., increases in 

phytoplankton blooms); changes in regulatory focus from the water column to the source 

of impairment (e.g., bird eggs, sport fish and small fish); and changes in the management 

of the Bay or adjacent wetlands (e.g., restoring salt ponds to wetlands).  Where possible, 

a power analysis was used to evaluate the cost-effectiveness and statistical power of the 

major elements of the Status and Trends Program.  For certain elements of the Program, 

it was not possible to conduct a statistical analysis.  This report describes methods and 
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selected findings from the power analyses and summarizes the rationale for changes 

made to the Program in cases where it was not feasible to conduct statistical analyses.  

The results of power analysis are dependent on the questions asked and the 

specific assumptions incorporated into the analysis. The objective of this analysis was to 

evaluate whether current sampling size and frequency are appropriate for meeting the 

needs of RMP stakeholders, including the San Francisco Bay Regional Water Quality 

Control Board (Regional Board). In particular, there is interest in three questions: 1. What 

power does the sample size of RMP stations provide to distinguish concentrations from 

relevant regulatory thresholds?  2.  What is the power of the current sampling design to 

determine long-term trends?  3.  Are there regions in San Francisco Bay where sampling 

intensity can be reduced in order to reallocate funds to higher priority items? 

 The focus of this power analysis was on pollutants that are of currently high 

management priority for the Bay. These include polychlorinated biphenyls (PCBs), 

mercury (Hg), copper (Cu), and nickel (Ni) (Table 1). Although there are many new 

compounds detected in Bay waters and sediments, datasets on these compounds are very 

limited to date (Oros et al. 2003).  

 

Methods 

 

 Based on the stated study objectives, we evaluated power using the RMP data set 

for two scenarios (Table 1). The design of each power analysis was tailored to the study 

questions being addressed (Table 2), which included explicit estimates of variability, 

effect size, and null and alternative hypotheses. Further details on the analyses can be 
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found in the methods description below. The first scenario compared the RMP data to 

thresholds.  This is analogous to the previous power analysis (Lowe et al. 2004), with the 

difference that updated thresholds and data were used.  The analysis only focused on 

thresholds of management significance for the Bay (Table 3). These were the US 

Environmental Protection Agency’s California Toxics Rule water quality criteria, Total 

Maximum Daily Load (TMDL) thresholds, and site-specific objectives for the Bay. Site-

specific aquatic life water quality objectives for copper and nickel were adopted by the 

State of California in 2003. Notably, of the pollutants recently measured in water, only 

PCBs have shown a high incidence of exceeding thresholds (n = 54 of 60, 90%; Table 4). 

The second scenario evaluated the power of the RMP random sampling design to detect 

long-term trends.  The specific question that was addressed can be summarized as, “given 

an expected rate of decline over a specified time frame, what is the power of the sampling 

design to detect a significant negative trend?”   

 The first scenario compared water and sport fish data to thresholds using a power 

analysis for a one-tailed non-central t-distribution in Systat 11 software (Systat Software 

Inc., San Jose, CA). The rationale for a one-tailed test is that the TRC and RWQCB 

expressed interest in detecting contaminant concentrations that are significantly lower 

than the applicable threshold. The hypothetical distributions of the test statistic (t) 

illustrated in Figure 1 demonstrate the difference between a one-tailed and a two-tailed 

test. In Plot A, a two-tailed distribution is illustrated. The region under the curve 

representing a type-1 error rate (α) is split between the two tails, and significant test 

results can be obtained for either being higher or lower than the threshold. In Plot B, a 

one-tailed distribution is illustrated. The overall type-1 error rate is the same as for a two-
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tailed distribution, except it is tested in one direction only. Therefore, the power analysis 

addressed whether the mean concentration of a contaminant in water or sport fish was 

below its threshold of concern (H0: µ ≥ Threshold vs. HA: µ < Threshold).   

 Some contaminants are currently well above threshold values. To simulate power 

to detect future pollutant levels that are below thresholds in these scenarios, 

concentrations were adjusted to 20% below its threshold, and the one-tailed comparison 

was made with this simulated data. This was necessary for mercury in white croaker, 

PCBs in white croaker and shiner surfperch, and mercury and PCBs in water. For water 

comparisons that did not require adjustments, mean contaminant concentrations were 

calculated based on the log-average for RMP sampling years since the redesign (2002 

and 2003). For sport fish, the log-average for all available years (1997, 2000, and 2003) 

was used. In both water and sport fish, variability was represented by the standard 

deviation of these yearly averages (n = 2 and n = 3, respectively). Using the estimates of 

mean concentration and variability, we calculated the number of samples required to be 

significantly below a particular threshold with 80% and 95% power. Table 3 lists the 

contaminants and thresholds that were applied.   

To address the second objective of evaluating the ability to detect long-term 

trends, a Monte Carlo simulation program was developed in the mathematical program 

Matlab (The MathWorks, Natick, MA). The program simulates contaminant 

concentrations for expected trends, with variability estimated based on current RMP data.  

In essence, the program creates a large number of simulated data points, based on an 

assumed model of contaminant concentrations and variability. This simulated data set 
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was then statistically evaluated using a range of sampling designs to determine which 

designs would have a high probability of detecting significant trends.  

 

 The model for data simulation was: 

 

 yi = Yo – R(t) + ε1 + ε2     (Equation 1) 

 

Where, yi = an individual simulated contaminant concentration sample, Yo = the initial 

average concentration, R = annual rate of decline, t = time (in years), and ε1 and ε2 are 

normally distributed error terms that represent the intra- and inter-annual variation, 

respectively. This is essentially a linear model with error terms (Figure 2). ε1 and ε2 were 

estimated using current RMP data as described below.  We realize that the majority of the 

intra-annual variation likely represents spatial variability, while temporal variability is 

encompassed by the estimates of inter-annual variation. Power analyses were performed 

either Bay-wide, or based on individual segments, depending on the matrix tested. RMP 

data were log-transformed prior to evaluation, and the model was run using log-scale 

parameters. As a result of log transformation, the model depicts contaminant declines as 

an exponential decay function, a common assumption for contaminant fate data (e.g., 

Stow et al. 1999).  

 After the redesign of the sampling program (in 2002), RMP station selection for 

water and sediments has followed the Generalized Random Tessellation Stratified 

(GRTS) design used by EPA’s Environmental Monitoring and Assessment Program 

(Lowe et al. 2004).  This redesign included switching from targeted sampling of 22 
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stations for both water and sediments to 31 stations for water and 47 stations for 

sediment. A few stations still remain targeted (n = 5 [water] and n= 7 [sediments]), with 

the remainder being sampled randomly (GRTS design). Estimates of the contaminant 

mean, variance, standard deviation, and standard error using the randomly collected data 

were calculated in version 2.9 of the psurvey.analysis statistical library, using the R 

system. R is free software downloadable through the Comprehensive R Archive Network 

(CRAN) web site at http://cran.r-project.org. The psurvey.analysis library for the analysis 

of probability surveys may be obtained from the Monitoring Design and Analysis section 

of the U.S. Environmental Protection Agency Aquatic Resources Monitoring web site 

(http://www.epa.gov/nheerl/arm/analysispages/software.htm).  

 Monte Carlo simulations generated 1,000 simulated data sets (e.g., Figure 3), 

based on the statistical parameters in Equation 1. All parameters were estimated using 

RMP Status and Trends data for a given contaminant and matrix. For sediment and water, 

the intra-annual (within-year) variation ε1 was estimated using psurvey.analysis based on 

the standard deviation of log-normalized data for each RMP sampling year since the 

redesign (generally 2002 and 2003). The inter-annual (between-year) variation ε2 was 

estimated by simply calculating the log average for each RMP sampling year (1994 – 

2003), and then determining the standard deviation of these averages. Scatter plots and 

regression analyses were performed to confirm lack of trend over this period. 

 An RMP Exposure and Effects Pilot Study for Double-crested Cormorant eggs 

was performed in 2002 and 2004. The pilot study monitored egg composites from three 

locations in the Bay (i.e., Wheeler Island, Richmond Bridge and Don Edwards in the 

South Bay). Of these, Richmond Bridge had previously been sampled by SFEI as a 
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special study in 1999 – 2001. Richmond Bridge was therefore selected for power analysis 

evaluation as this station represented the longest running dataset on cormorant eggs 

(Davis et al. 2007b). Variance estimates (ε1 and ε2) were based on two samples per year 

for the five years of data, which were derived using the same method as for sediment and 

water, except that data pertained to a single station.  

 The variability estimates for sport fish and bivalves were derived using a 

modification of the methodology for sediment and water. Since RMP tissue data are 

collected at discrete stations distributed around San Francisco Bay, the variability in 

contaminant concentration due to the effects of time and station were accounted for. 

Transplanted bivalves are deployed once a year (dry season) at nine fixed mooring 

stations in the Bay for a period of 90 – 100 days, and subsequently analyzed for tissue 

contaminant concentrations. Description of the data treatment for bivalves can be found 

in Appendices I and II. Sport fish are collected every three years in a non-random 

fashion, at five targeted stations distributed around the Bay. For sport fish, the effects of 

lipid, length, and station were tested first using a one-way analysis-of-variance 

(ANOVA) in Systat 11 (Systat Software Inc., San Jose, CA). If any significant effects 

were found, the residuals of the ANOVA were saved, and the average of these residuals 

for each available RMP sampling year (1994, 1997, 2000, and 2003) was calculated. In 

general, lipids never constituted a significant effect, while length and station commonly 

did. The residuals of the ANOVA represent the variation in contaminant concentration 

once the influence of these effects has been removed.  The between-year variation ε2 was 

then determined by calculating the standard deviation of these yearly averages. If no 

significant effects of length or station were found, ε2 was simply represented by the 
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standard deviation of the annual average concentrations of the log-transformed raw data. 

The within-year variation ε1 was estimated by performing a one-way ANOVA with a year 

effect, on either the raw data or the residuals of the first ANOVA, depending on whether 

a station or length effect was found initially. The within-year variability was then 

represented by the standard deviation of the residuals of this ANOVA. 

 The power to detect trends over time was evaluated for various pollutants. In 

water, DDTs (sum of o,p’ and p,p’ isomers of DDT, DDD, and DDE), PCBs (sum of 40 

congeners) and total mercury were used. Rates of change that are consistent with the 

current understanding of long-term trends in these pollutants were examined. Historical 

data on PCBs and DDTs suggest that these pollutants are declining at a rate of 

approximately 5% per year (Davis et al. 2006, Connor et al. 2007, Davis et al. 2007a). To 

be conservative, these pollutants were examined at a decline rate of 3.5% per year for 20 

years. Mercury is generally considered to be declining at a much slower rate (Greenfield 

et al. 2005, Conaway et al. 2007). Therefore, this pollutant was examined at a decline rate 

of 1% per year for 30 years. The same PCB and mercury decline rates for water were 

used to evaluate sediments and sport fish. Sport fish analyses were only conducted on 

shiner surfperch and white croaker, as these species represented the largest sport fish 

datasets, although other sport fish are routinely monitored. For bivalves, PCBs (3.5 % per 

year), DDTs (3.5% per year) and PBDE 047 were examined. Notably, PBDEs have only 

been sampled at seven sites, visited annually since 2002. Evaluation of this dataset 

showed that the average concentration of PBDE 047 has declined at an average rate of 

9% per year. However, with such a limited dataset, there was little basis for projecting the 

average decline into the future. To be conservative, we examined PBDE 047 with a decay 
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rate of 3.5% per year (same as PCBs and DDTs). For cormorant eggs, the same pollutants 

evaluated for water were used (PCBs, DDTs, and mercury), but with modified decline 

rates. Scenarios for PCBs were employed at a decline rate of 6% per year for 20 years, 

based on the expected decline rate for transplanted bivalves in the Bay (Davis et al. 

2006). DDT is expected to decline more rapidly, and therefore an annual decline rate of 

4% and 8% per year for 20 years were evaluated. Mercury was evaluated with slower 

annual decline rates of 1% and 3% per year for 30 years. Power analyses for PBDEs in 

cormorant eggs were also performed, but this dataset only represented two years. 

Therefore, the PBDE results are not presented here, but have been summarized by Davis 

et al. (2007).  

 Linear regression analysis was performed on each simulated data set to determine 

slope and statistical significance (p-value). The proportion of results that exhibited 

statistically significant declining slopes (p < 0.05) was then calculated to determine 

statistical power. Therefore, the program evaluates the statistical power to correctly 

discern a declining trend given the underlying model. Power was evaluated across a range 

of sampling designs, including varying sampling frequency (e.g., every 1 to 5 years) and 

sample size per year (e.g., Figure 4). 
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Results and Discussion 

 

Water 

  

 The current design for monitoring water in the Bay is nine random samples in the 

South Bay, five random samples in Lower South Bay, and four random samples in the 

remaining three segments, collected annually. A total of 31 (26 random and 5 fixed) sites 

are currently monitored (SFEI 2006a). This design would be sufficient to detect trends of 

PCBs and DDT in water over the next 20 years. In all Bay segments, the power to detect 

a 3.5% annual decline would be > 95%, using the current sampling design (red cells in 

Table 5). Analysis of mercury indicated similarly high power estimates over 30 years in 

segments other than San Pablo Bay. Four samples collected annually in San Pablo Bay 

would be sufficient to detect a 1% annual decline in mercury with 74% power. This lower 

power can largely be attributed to higher within-year variation (s.d. = 0.41) compared to 

other segments (s.d. = 0.12 – 0.32). Furthermore, Table 6 suggests that the coefficient of 

variation (CV) of some contaminants differ greatly between segments (e.g., PCBs and 

DDTs in water). Differential mixing processes, loadings, and hot spots may explain why 

the two largest segments (Central Bay and San Pablo Bay) often had the highest CVs. 

Hot spots in San Francisco Bay (e.g., Hunter’s Point, Oakland Harbor, Richmond 

Harbor) have often coincided with the margins of the largest Bay segments, and thus 

could contribute to the higher variability in contaminant concentrations. Future modeling 

work in the Bay will examine the contributions of these characteristics of the Bay to 

contaminant variability estimates. 
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 Water contaminant concentrations have generally been used for comparison to 

water quality objectives, and not for detecting trends. Recently, the target matrix for PCB 

and mercury TMDL development has begun shifting from a focus on water to biota (e.g., 

SFRWQCB 2006). Given this, the power analysis results suggest that it may be possible 

to reduce either the frequency of monitoring or the number of stations (e.g., Appendix 

III.1). Nevertheless, one of the concerns with switching to less frequent sampling is the 

possibility of missing short-term fluctuations. Mechanisms underlying natural variability 

in water constituents, such as rate of plankton growth and rainfall-induced loading during 

individual sampling events may cause short-term fluctuations in contaminant 

concentrations. If surprisingly different concentrations are found in the future based on an 

infrequent monitoring strategy, there is concern that trends and sources of variability 

would take much longer to recognize. In light of the generally high power estimates 

across contaminants and segments, the TRC recommended continuing annual sampling 

but collecting fewer samples each year (Table 7).  

 RMP water data were also evaluated for the power to determine that 

concentrations are below water quality objectives (Table 3). Results indicated that we 

currently have adequate power to distinguish copper, nickel, and lead in water from 

thresholds with 95% power (Table 8). This can largely be attributed to current 

concentrations that are already well below guidelines. Future PCB and mercury 

concentrations were simulated by adjustment to 20% below their respective thresholds as 

described in the Methods. As a result, the analysis suggested that only in the South Bay 

would the current design detect PCBs below the CTR threshold with 80% power. For 

mercury, many more samples than are currently being collected would be required to 
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detect concentrations below the TMDL threshold with 80% power. Mercury 

concentrations have been well above guidelines in numerous matrices since 

measurements began (SFEI 2006a). The current design would not distinguish PCBs or 

mercury below their respective thresholds in any of the segments with 95% power. The 

current water sampling design was largely driven by copper in the South Bay, in order to 

have sufficient data to discern whether the segment was below previous thresholds. With 

the revised copper guideline, it is not necessary to have so many stations located in this 

segment for this purpose. In addition, for pollutants such as PCBs, much of the water 

column exceeds the CTR threshold and will likely exceed it for an extended period of 

time. The threshold analysis suggests a reduction in sampling stations would still allow us 

to confirm that concentrations of copper, nickel, and lead are below management 

thresholds with relatively high power. For PCBs and mercury, concentrations are not 

expected to be below thresholds for quite some time. 

 

Sediment 

 

 The current design for monitoring sediment in the Bay is eight samples in each 

segment, collected annually. The existing number of sites (40 random and 7 fixed sites) 

was chosen to provide good coverage across the Bay. The power analysis results 

suggested that this design obtains the necessary power to detect long-term trends in 

mercury and PCBs. The power of the current design to detect a 3.5% annual decline in 

PCBs over the next 20 years would be > 99% in all Bay segments (red cells in Table 9). 
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For mercury, power would be similarly high. The power analysis indicated that a 

reduction in sample size or monitoring frequency would be appropriate.  

 Reallocation of samples to the three largest sample areas (South, Central, and San 

Pablo Bays) was considered given the low number of samples per unit area. The TRC 

noted that by reducing the number of samples below six, we would begin to lose the 

power to adequately characterize trends in Suisun Bay. Suisun Bay is one of the two most 

dynamic segments (Lower South Bay is the other), being heavily influenced by 

freshwater inflows and high storm flow regimes (SFEI 2006a). The high within-year 

variability and CV values (Table 6) would therefore be expected given these regimes. 

Therefore, modifying the number of stations to be proportional to the size of the segment 

is not warranted. Currently, all samples are collected in the dry season (July – August). 

To better characterize each segment with the current design, the TRC recommended a 

small portion of samples be reallocated to the winter months every other year as this is 

when highest sediment toxicity is frequently observed.  Given the high power estimates 

across contaminants and segments with the current design, the TRC recommended that 

future sediment monitoring could alternate between summer and winter sampling every 

other year (Table 7).           

 

Bivalves 

   

The current design for monitoring bivalves is annual sampling of eight targeted 

stations distributed throughout the Bay. Bivalve collections (California mussel) have 

been made since 1981, but were generally not spaced evenly over time, with some years 
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sampled in both the spring and fall, while other years were only sampled in the fall. 

Power analyses to evaluate long-term trend detection using the bivalve dataset are 

detailed in Appendices I and II. These appendices describe bivalve analyses using two 

techniques to demonstrate their robustness to multiple power analysis approaches. Both 

analyses included a rigorous treatment of spatial and temporal effects on bivalve 

contaminant concentrations. Similar evaluations were performed for other matrices, but 

given special attention here due to the fixed monitoring design and the significant spatial 

and temporal variations reported previously (Gunther et al. 1999). An overall declining 

trend was evident in PCBs (Appendix I, Figures 5 and 6). However, the trend was 

significantly different for a few stations in the Bay. Notably, Fort Baker/Horseshoe Bay, 

Pinole Point, and Red Rock/Richmond Bridge had significantly lower bivalve PCB 

concentrations than the other stations. Estimates of variability in both analyses accounted 

for the spatial and temporal effects on bivalve contaminant concentrations.   

Power estimates for all three pollutants were very high. The power to detect a 

3.5% annual decline over 20 years would be > 99% in all cases. The results of both 

analyses suggested that a significant reduction in sampling frequency or number of 

sampling locations would still achieve > 90% power (Appendix I - Table 2; Appendix II - 

Table 5). Therefore, the RMP could substantially reduce bivalve monitoring frequency or 

number of sites without affecting the program’s ability to detect trends. For example, a 

reduction of sampling frequency to every 2 – 5 years would not impair the ability to 

determine long-term trends (Appendix II - Table 5). Neither would a reduction in sample 

size from 10 to 7. Therefore, due to the relatively high cost to mobilize the bivalve 
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sampling, the TRC recommended modifying the current sampling regime (Table 7) to 

biennial sampling of the same stations monitored in previous years. 

   

Sport fish 

 

A total of five fixed sites are currently monitored for shiner surfperch and white 

croaker every three years (SFEI 2006a). The power of the current design to detect the 

assumed decline rates would be > 90% in both species (red cells in Table 10). Power for 

sample designs with less frequent monitoring and reduced samples indicated that PCBs 

would be more sensitive to such changes than mercury.  

 Sport fish were also evaluated for the ability to detect concentrations that are 

below thresholds (Table 3). Results for mercury in shiner surfperch indicated that a 

sample size could be reduced considerably while still retaining relatively high power 

(Table 11). To achieve 95% power to be below thresholds, only four samples would be 

needed to detect mercury concentrations. However, for mercury in croaker and PCBs in 

croaker and shiner surfperch concentrations have been well above management 

thresholds (SFEI 2006a). Therefore, the average concentrations were adjusted to 20% 

below the respective threshold to facilitate the one-tailed comparison. Consequently, for 

mercury in white croaker the power analysis estimated that the number of samples 

needed to achieve 95% power to be more than 40. For PCBs in both croaker and shiner, 

the estimated sample size for 95% power was more than 50. In general, the number of 

samples required to achieve either 80% or 95% power in these scenarios are much higher 

than could be reasonably collected with the available resources.  
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 Reduction in the number of samples for each species was considered by the TRC. 

However, the RMP sport fish dataset is considered to be extremely important for 

management decisions and human health evaluations. A reduction in number of samples 

was not considered to represent a significant savings in cost or time. Therefore, the TRC 

recommended that no changes be made to the current sport fish monitoring design (Table 

7). 

 

Cormorant Eggs 

 

 Monitoring of bird eggs to date has only been performed in special studies. A 

recommended design for continued cormorant egg monitoring has recently been proposed 

based on our power analysis results (Davis et al. 2007b). For DDTs (8% annual decline), 

PCBs (6% annual decline), and mercury (3% annual decline) there would be > 80% 

power to detect these trends if at least three samples were collected every 1 – 3 years 

(Table 12). However, if mercury declines more slowly (1% per year), there would be a 

much smaller chance of detecting that trend. Davis et al. (2007b) recommended that three 

composites of seven eggs per site be collected every three years to detect the expected 

trends in all three pollutants. This judgment was largely based on a power requirement of 

80%, cost considerations, and priority relative to other monitoring elements. Notably, the 

current dataset for cormorant eggs is relatively small, and exhibits higher variability than 

other matrices. Given budgetary constraints, 95% power could not be expected for most 

of the contaminant scenarios. Therefore, the ability to detect trends in cormorant eggs 

will not be as powerful as predicted for other matrices. 
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Non-statistical Evaluations of Other Elements of the Program 

 

 In a number of instances, it was not possible to conduct statistical analyses to 

evaluate program elements. The TRC and SC evaluated each element in light of the 

following information: regulatory context; management guidelines; highlights of 

scientific findings; and recommended staff options. For each of the elements not 

addressed through the power analyses, a summary of the discussion and key points are 

presented below. A summary of changes made to future RMP sampling is included on 

Table 7.  Further discussion of the changes can be found in the minutes from the redesign 

meetings that occurred in 2006. 

 

Episodic Toxicity (renamed Causes of Toxicity) 

 

 With the changing use of pesticides (a shift from organophosphates to 

pyrethroids), the episodic toxicity program has moved from a focus on water column 

toxicity to sediment toxicity (see for example the discussion of this issue in the 2003 

Pulse of the Estuary). This element addresses the narrative objective in the Basin Plan 

that states “all waters shall be free of toxic substances in concentrations that are lethal to 

or that produce other detrimental responses in aquatic organisms”. At present, the causes 

of episodic toxicity are not well understood. Considerable research has been conducted 

by Dr. Donald Weston and his group at University of California-Berkeley to demonstrate 

that the use of pyrethroids in urban areas may be responsible for toxicity observed in 
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urban streams. Preliminary work to date in the San Francisco Bay watershed has 

identified toxicity in select urban creeks (e.g., Lower San Mateo Creek). However, the 

causes of this toxicity have not been identified. The TRC and SC recommended that work 

towards this element be changed from annual to biennial.  

 

Sediment Toxicity and Benthos 

 

 As discussed in the sediment chemistry section above, the TRC and SC approved 

the continuation of monitoring sediment chemistry annually. Monitoring sediment 

toxicity is conducted in concert with the sediment chemistry element, though at a more 

limited number of sites (27 vs. 47). Sediment toxicity addresses the narrative objective in 

the Basin Plan that states “all waters shall be free of toxic substances in concentrations 

that are lethal to or that produce other detrimental responses in aquatic organisms”.  To 

better understand the causes of sediment toxicity that are observed in the Bay, 

particularly in the winter, sediments will be monitored in alternating wet and dry seasons.   

It was originally proposed that sediment toxicity be reduced to 14 sites; however, this 

does not allow for sufficient sample coverage for each of the RMP segments of the Bay.  

The TRC and SC approved the analysis of sediment toxicity at 27 sites annually.   

 The State Regional Water Quality Control Board will soon adopt sediment quality 

objectives that are based on a triad approach – sediment chemistry, sediment toxicity, and 

benthos. To facilitate these evaluations in the San Francisco Bay, the RMP will conduct 

benthic assessments at the 27 sites where sediment toxicity is being conducted.  
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Small Fish 

 

 To date, monitoring of contaminants in small fish has been conducted as a pilot 

study under the review of the Exposure and Effects workgroup. Small fish are good 

spatial indicators as they have limited home range and are good temporal indicators as the 

sampled fish are less than a year old. The small fish pilot study commenced in 2005 with 

an evaluation of mercury concentrations in benthic and pelagic species at eight locations 

within the Bay, and this sampling has since been conducted annually. The preliminary 

results indicate significant mercury variation among species and location. In 2007, small 

fish will also be evaluated for organic compounds (e.g., PCBs and PBDEs). This element 

addresses the small fish monitoring objective listed in the mercury TMDL (0.03 ug/g), 

assists in the evaluation of risks to piscivorous wildlife, and aids in the development of 

food web models. 

The small fish monitoring program is an important tool for evaluating the 

bioavailability of contaminants for uptake into the food web. The Contaminant Fate 

workgroup has placed a high priority on this monitoring element and has proposed that it 

be expanded for 2008. The scope of the program has not yet been determined and will be 

reviewed by both the Contaminant Fate and Exposure and Effects workgroups.   

  

Tributary Loading 

 

 The RMP has conducted a number of special studies to evaluate contaminant 

loads introduced into the Bay from the Delta (San Joaquin and Sacramento Rivers) to the 
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north and the Guadalupe River to the south.  This loading information has been helpful in 

the evaluation of trends, critical for model development, and important for TMDL 

development.  It was recommended that the Delta and Guadalupe River loading studies 

be continued on a triennial basis. 

 Small tributaries represent one of the largest contributions of contaminant 

loadings to the Bay and as such are very important to the development of TMDLs and 

management actions to prevent the release of contaminants. In 2006, the RMP embarked 

on a special study to begin to characterize the loads from small watersheds surrounding 

the Bay. The first study has focused on a small industrial watershed located in Hayward.  

The Sources, Pathways and Loading workgroup, which oversees the tributary studies, 

recommended that characterization of small tributary loads be undertaken on an annual 

basis and this element characterize loads from a variety of watersheds. The TRC and SC 

endorsed this concept.     

 

USGS Hydrography Studies 

 

 The USGS conducts monthly monitoring of phytoplankton, suspended sediment 

concentrations, temperature, dissolved oxygen, and light at 36 stations located along the 

spine of the Bay. The RMP contributes to a portion of the costs associated with this 

monitoring program (approximately 20%). This element addresses a narrative objective 

in the Basin Plan prohibiting biostimulatory substances in harmful amounts. The Basin 

Plan has also adopted standards for dissolved oxygen, temperature, and salinity. 
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 Data from this program element has been used to track trends and recently 

identified a significant change in phytoplankton blooms (increased spring blooms and 

appearance of a fall bloom). Understanding phytoplankton dynamics is also important for 

understanding metal cycling in the Bay as metals are frequently taken up and released by 

phytoplankton. It is also useful for modeling Bay hydrodynamics and understanding the 

impacts of invasive species (e.g., the dearth of phytoplankton populations after the Asian 

clam invasion in the late 1980s). The TRC/SC endorsed continuation of this program 

element at the existing effort.  

 

Summary 

       

 On the basis of the power analysis results and other considerations, the TRC made 

recommendations for future monitoring of contaminants in the Bay (Table 7). Water, 

sediments, bivalves, and sport fish are currently monitored under the RMP Status and 

Trends Program. The power for these matrices with the current sampling design and 

assumed rates of decline will be very high (> 95% in most cases). Sport fish and bivalves, 

in particular, appear to be the best indicators for trends (Table 10 and Appendix II, Table 

5). This can be attributed to the rigorous treatment of spatial and temporal effects in our 

analyses. Specifically, the removal of these effects resulted in lower variability estimates 

in sport fish and bivalves (the unexplained variability), relative to water and sediments. 

For example, the between-year standard deviation for PCBs in shiner surfperch and white 

croaker were 0.02 and 0.04, respectively. However, the standard deviations for PCBs in 

water were much higher, ranging from 0.20 – 0.26, depending on the segment. Therefore, 
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in some cases, the power results for sport fish and bivalves were higher than for water 

and sediments. Future analyses could attempt to evaluate power based on estimates of 

unexplained variability in water and sediments, as was performed for bivalves and sport 

fish. 

 General discussion by the TRC also included an assessment of the contribution 

that each matrix has made to thresholds evaluations, management questions, and 

regulatory interest (e.g., Appendix III.1). The TRC recommended that the sampling 

design for Status and Trends matrices other than sport fish be modified, due to adequate 

characterization of contaminant variability in these matrices for the majority of the Bay. 

Sport fish monitoring would achieve adequate power for trend detection, but due to high 

concentrations of mercury in white croaker, the ability to distinguish concentrations 

below thresholds could not be achieved with the current design. Nevertheless, the 

Committee deemed the value of the current sport fish monitoring design to be very high, 

particularly since the TMDL target matrix has begun shifting from water to sport fish 

(SFRWQCB 2006), and suggested that modifications not be made. Finally, cormorant 

eggs have previously only been monitored under special studies. A proposal for inclusion 

of cormorant egg monitoring every three years that included an evaluation of power was 

supported by the TRC, due to their value for assessment of long-term trends and regional 

patterns in mercury, PCBs, and other analytes such as dioxins and bioaccumulative 

emerging pollutants.
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Figure 1. Normal distribution of probability values associated with the test statistic (t) for 
one and two-tailed tests (α = 0.05). In the two-tailed test (A), the “tails” of the 
distribution indicate significant lower (left side) or higher (right side) values. In the one-
tailed test (B), the tail of the distribution only indicates a significant lower value. 
Therefore, the “rejection region” of the null hypothesis is larger, because a significant 
higher value is of no interest. Source: http://www.ats.ucla.edu/stat/sas/faq/pvalue.htm 
 
 
 
(A)       
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Figure 2. Schematic depiction of model to generate simulated data. Dashed line 
represents the simulated trend. Solid line with large dots represents simulated inter-
annual variation (i.e., the trend plus ε1). The small dots represent individual simulated 
data points (yi), incorporating both inter-annual variation and within-year variation ε2. 
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Figure 3. Example outputs from Monte Carlo simulations. Both simulations include 5 
samples collected annually and are based on log-transformed data. a. Sample simulation 
result for relatively low variation, as compared to rate of decline. Parameter inputs were 
Yo = 1, R = -0.02, ε1 = 0.15, and ε2 = 0.05. b. Sample simulation result for relatively high 
variation, as compared to rate of decline. Parameter inputs were Yo = 1, R = -0.01, ε1 = 
0.5, and ε2 = 0.3.   
 
a.  

 
 
b. 
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Figure 4. Example of Monte Carlo simulation results. Results are for evaluation of white 
croaker PCB concentrations, assuming a 1.12 % annual rate of decline (R = - 0.0112, ε1 = 
0.081, and ε2 = 0.039). Sample size and interval combinations in red are expected to have 
adequate power. For example, on a 3 year sampling interval (current regime), 5 samples 
should be collected at each sampling event to have power > 80%.  
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Table 1. Priority analyses and compounds. Trend Analysis: Evaluated power to detect trend given the decline rate and time frame.  
Threshold Analysis: Evaluated power to detect whether concentrations in a given year were below the threshold of concern. 
 
 Trend analysis Threshold analysis Priority analyses 

Compound Time frame Rate of decline 
Relevant thresholds for current 
comparison Water (total) 

Water 
(dissolved) Sediment Bivalves Bird eggs Sport fish 

DDT 20 yr 3.5%/year None Trends   Trends Trends (2)  

PCBs 20 yr 3.5%/year PCB TMDL (fish tissue), CTR (water) 
Trends/ 
Threshold  Trends Trends Trends (2) 

Threshold/ 
Trends 

Mercury 30 yr 1%/year Hg TMDL (sediment, sport fish), CTR (water) 
Trends/ 
Threshold (1)  Trends Trends Trends (2) 

Threshold/ 
Trends 

PBDE 047 20 yr 3.5%/year None    Trends   

Copper No trend work No trend work Revised thresholds (dissolved - 6 and 6.9)  Threshold         

Nickel No trend work No trend work Revised thresholds (dissolved - 11.9)  Threshold          

Lead No trend work No trend work CTR (occasional exceedances)  Threshold         
1. Note that the Hg TMDL requires evaluation of Hg in TSS, which was therefore used for the water evaluation 
2. Modified rates of decline were used for bird eggs: For DDT, 8% per yr and 4% per yr; for PCBs, 6% per yr; and for mercury, 3% per yr and 1% per yr. 
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Table 2. Summary of power analysis for each matrix (α = 0.05). Within-year standard deviation was estimated using the standard 
deviation of log-averages for data collected since the redesign (2002-2003). Between-year standard deviation was estimated using 
standard deviation of log-averages of all years (1994 – 2003). Methods section provides further details on these analyses.  

Matrix Power Analysis Scenario 
Sampling 
Design Contaminants  Estimated Variability  Effect Size Tested 

Null 
Hypothesis 

Alternative 
Hypothesis 

Random 
(annual) 

PCBs (total) and 
Mercury (in TSS) 

Within-year standard 
deviation 

Concentration set to 80% of 
regulatory threshold compared to 
that threshold ≥ Threshold < Threshold Water 

Scenario 1 – 
Power for concentration to 

be below threshold of 
regulatory significance Random 

(annual) 
Copper, Nickel, and 
Lead (dissolved) 

Within-year standard 
deviation 

Current mean concentration 
compared to regulatory threshold ≥ Threshold < Threshold 

 
Fixed 
(triennial) 

Mercury and PCBs  
(in white croaker) 

Within-year standard 
deviation 

Concentration set to 80% of 
regulatory threshold compared to 
that threshold ≥ Threshold < Threshold 

Sport fish 
Fixed 
(triennial) 

Mercury  
(in shiner surfperch) 

Within-year standard 
deviation 

Current mean concentration 
compared to regulatory threshold ≥ Threshold < Threshold 

 

Scenario 1 – 
Power for concentration to 

be below threshold of 
regulatory significance 

Fixed 
(triennial) 

PCBs  
(in shiner surfperch) 

Within-year standard 
deviation 

Concentration set to 80% of 
regulatory threshold compared to 
that threshold ≥ Threshold < Threshold 

Random 
(annual) PCBs and DDTs (total) 

Between- and within-
year standard deviation 

Exponential annual decline of 
3.5% over 20 years 

Lack of 
trend 

Significant 
declining trend Water 

Scenario 2 – 
Power for simulated decline 
in concentration over time Random 

(annual) Mercury (total) 
Between- and within-
year standard deviation 

Exponential annual decline of 1% 
over 30 years 

Lack of 
trend 

Significant 
declining trend 

Random 
(annual) PCBs 

Between- and within-
year standard deviation 

Exponential annual decline of 
3.5% over 20 years 

Lack of 
trend 

Significant 
declining trend Sediment 

Scenario 2 – 
Power for simulated decline 
in concentration over time Random 

(annual) Mercury 
Between- and within-
year standard deviation 

Exponential annual decline of 1% 
over 30 years 

Lack of 
trend 

Significant 
declining trend 

Fixed 
(triennial) PCBs 

Between- and within-
year standard deviation 

Exponential annual decline of 
3.5% over 20 years 

Lack of 
trend 

Significant 
declining trend Sport fish 

Scenario 2 – 
Power for simulated decline 
in concentration over time Fixed 

(triennial) Mercury 
Between- and within-
year standard deviation 

Exponential annual decline of 1% 
over 30 years 

Lack of 
trend 

Significant 
declining trend 

Bivalves 
Scenario 2 – 

Power for simulated decline 
in concentration over time 

Fixed 
(annual) 

PCBs, DDTs, and 
PBDE 047 

ANCOVA (site and year 
variance) 

Exponential annual decline of 
3.5% over 20 years 

Lack of 
trend 

Significant 
declining trend 

Fixed 
(special 
study) PCBs 

Between- and within-
year standard deviation 

Exponential annual decline of 6% 
over 20 years 

Lack of 
trend 

Significant 
declining trend 

Fixed 
(special 
study) DDTs 

Between- and within-
year standard deviation 

Exponential annual declines of 
4% and 8% over 20 years 

Lack of 
trend 

Significant 
declining trend 

Double-crested 
Cormorant 
Eggs 

Scenario 2 – 
Power for simulated decline 
in concentration over time 

Fixed 
(special 
study) Mercury 

Between- and within-
year standard deviation 

Exponential annual declines of 
1% and 3% over 30 years 

Lack of 
trend 

Significant 
declining trend 
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Table 3.  The thresholds of management significance for RMP stakeholders and the Regional Board. These were used both in 
threshold analyses, and in determining the power to detect a declining trend sufficient to reach thresholds. 
 

Compound Matrix Threshold Source and basis Segments1 
Cu Dissolved in Water 6.9 µg/L (ppb) Tom Hall, Richard Looker, Peter Schafer, pers. comm. Revised Cu guidelines. LSB 
Cu Dissolved in Water 6.0 µg/L (ppb) Revised Cu guidelines. SB, CB, SPB, SU 

Hg Total in TSS 0.2 ng/g (ppb) dry sediment 2006 TMDL Draft Basin Plan Amendment. Appendix A. Pg. 7 All 
Hg Sport Fish 0.2 µg/g (ppm) wet 2006 TMDL Draft Basin Plan Amendment. Appendix A. Pg. 4 All 

Ni Dissolved in Water 11.9 µg/L (ppb) Tom Hall, Richard Looker, Peter Schafer, pers. comm. Revised Ni guidelines. LSB 
Ni Dissolved in Water 8.2 µg/L (ppb) Revised Ni guidelines. CB, SPB, SU, SB 

PCB Total in Water 170 pg/L  (ppq) CTR to protect human health All 

PCB Sport Fish 10 ng/g  (ppb) wet PCB TMDL. Fred Hetzel pers. comm.  All 
 
Table 4. Compounds observed to exceed thresholds in recent RMP monitoring. These were the focus of the threshold component of 
the power analysis. Results are based on evaluation of Annual Monitoring Results (SFEI 2005).  
 
        2002/2003     

Matrix Constituent 
Threshold 

(µg/L) Threshold type 
Number 

exceedances N 
Location of 
Exceedances 

Water Total Copper  3.7 
"non-regulatory saltwater effects 
threshold" 15 60 SU, SPB 

Water Total Lead 3.2 
"non-regulatory freshwater effects 
threshold" 3 60 SPB, LSB 

Water Total Hg 0.051 "lower South Bay site specific objective" 1 11 LSB 
Water Total Hg 0.025 "regulatory objective" 2 49 SPB 
Water Total Ni 7.1 "non-regulatory effects threshold" 4 49 SU, SPB 

Water 
Total Sum 
PCBs 0.17 "human health criterion" 54 60 All Segments 

                                                
1 Abbreviations for Bay segments in this document follow RMP conventions: SU – Suisun Bay, SPB – San Pablo Bay, CB – Central Bay, SB – South Bay, LSB 
– Lower South Bay.  
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Table 5. Power analysis results for detecting long-term trends in PCBs, DDT, and mercury in water. Results are based on estimated 
inter- and intra-annual variability for each segment, and assumed rates of decline. Red text represents the current monitoring design 
for each segment, and the blue areas highlight results that are > 95% power. 
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Lower South Bay Suisun Bay

Sampling Interval (years) Sampling Interval (years) Sampling Interval (years) Sampling Interval (years) Sampling Interval (years)

South Bay Central Bay San Pablo Bay

Scenario: 3 99% 89% 86% 73% 66% 100% 94% 87% 78% 69% 98% 84% 73% 59% 52% 99% 84% 76% 60% 53% 99% 86% 82% 68% 64%

PCBs 4 99% 93% 90% 79% 76% 100% 96% 93% 83% 76% 98% 89% 81% 68% 65% 99% 91% 83% 71% 63% 99% 92% 87% 77% 72%

Water (total) 5 100% 95% 91% 83% 78% 100% 97% 93% 87% 83% 99% 91% 83% 74% 70% 99% 95% 88% 77% 68% 100% 93% 89% 78% 74%

20 Year 6 100% 95% 93% 84% 80% 100% 97% 94% 86% 81% 99% 91% 87% 80% 70% 100% 93% 90% 82% 73% 100% 95% 90% 84% 77%

3.5% Annual Decline 7 100% 96% 90% 85% 81% 100% 98% 96% 90% 86% 99% 92% 88% 80% 77% 100% 96% 94% 82% 77% 100% 94% 93% 85% 78%

8 99% 97% 93% 86% 84% 100% 98% 95% 90% 85% 100% 93% 90% 83% 76% 100% 97% 94% 85% 79% 100% 96% 93% 86% 83%S
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Scenario: 3 96% 82% 74% 64% 56% 96% 84% 78% 66% 62% 100% 100% 98% 92% 87% 97% 81% 73% 59% 51% 99% 88% 81% 71% 69%

DDTs 4 98% 85% 78% 71% 65% 96% 86% 82% 73% 68% 100% 100% 99% 95% 90% 98% 88% 80% 69% 62% 99% 92% 87% 78% 74%

Water (total) 5 97% 88% 81% 73% 68% 99% 89% 84% 75% 74% 100% 100% 100% 96% 93% 99% 89% 83% 74% 65% 99% 93% 89% 80% 76%

20 Year 6 97% 89% 83% 75% 74% 98% 91% 86% 77% 73% 100% 100% 99% 98% 96% 99% 93% 87% 77% 72% 100% 93% 91% 82% 80%

3.5% Annual Decline 7 99% 91% 86% 77% 74% 99% 91% 88% 80% 78% 100% 100% 100% 99% 96% 99% 94% 90% 80% 72% 99% 94% 90% 81% 81%

8 98% 90% 87% 79% 73% 99% 93% 90% 82% 77% 100% 100% 100% 99% 97% 100% 94% 89% 80% 77% 100% 96% 92% 83% 83%
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Scenario: 3 99% 88% 72% 67% 50% 96% 80% 67% 65% 57% 79% 52% 40% 33% 25% 60% 36% 29% 25% 17% 100% 96% 85% 85% 68%

Mercury 4 100% 92% 82% 77% 64% 97% 87% 75% 73% 60% 89% 64% 50% 43% 33% 74% 47% 33% 31% 21% 100% 98% 91% 90% 76%

Water (total) 5 100% 96% 87% 83% 71% 98% 90% 80% 76% 68% 92% 68% 54% 51% 39% 80% 53% 43% 36% 26% 100% 98% 94% 90% 85%

30 Year 6 100% 98% 91% 90% 75% 98% 90% 80% 82% 70% 95% 76% 58% 54% 45% 86% 60% 48% 46% 29% 100% 99% 96% 95% 83%

1% Annual Decline 7 100% 99% 94% 91% 78% 99% 92% 85% 81% 75% 96% 79% 63% 59% 50% 89% 67% 54% 49% 36% 100% 99% 97% 95% 87%

8 100% 100% 95% 94% 83% 99% 93% 87% 85% 74% 97% 84% 66% 67% 54% 93% 70% 57% 52% 38% 100% 100% 98% 97% 91%S
a
m

p
le

s
/y

e
a
r

 
 
 
 
 
 
 
 
 
 
 
 
 
 



RMP Power Analysis 2006 

 35 

Table 6. Comparison of mean, intra-annual variance, and coefficient-of-variation (CV) 
for PCBs, mercury, and DDT measured in each Bay segment for water and sediments 
(2002 – 2005). Red represents the highest CV for each contaminant-matrix combination. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
2 Segment areas for sediment are larger than water because sediment sampling accounts for topography 
whereas water sampling does not. 

Contaminant Matrix Segment 
Intra-annual 

Variance Mean CV 
Segment 

Area2 
PCB (pg/L) Water LSB 184.4 943.1 19.55 5 
    SB 151.6 452.7 33.48 144 
    CB 316.5 642.1 49.29 382 
    SPB 229.3 478.5 47.91 181 
    SU 72.86 200.0 36.43 72 
Hg (µg/L) Water LSB 0.005 0.009 60.95 5 
    SB 0.002 0.006 37.86 144 
    CB 0.003 0.006 50.00 382 
    SPB 0.014 0.022 65.36 181 
    SU 0.004 0.014 31.06 72 
DDT (pg/L) Water LSB 104.5 285.6 36.58 5 
    SB 23.75 101.3 23.44 144 
    CB 73.30 191.2 38.35 382 
    SPB 165.0 335.5 49.19 181 
    SU 53.37 329.4 16.21 72 
PCB (µg/kg) Sediment LSB 1.770 5.792 30.61 8 
    SB 1.880 5.356 35.12 185 
    CB 2.530 6.321 40.08 396 
    SPB 4.130 4.686 88.18 227 
    SU 1.270 1.768 71.75 80 
Hg (µg/kg) Sediment LSB 0.04 0.257 15.52 8 
    SB 0.05 0.218 21.91 185 
    CB 0.05 0.245 22.23 396 
    SPB 0.08 0.265 30.67 227 
    SU 0.09 0.141 61.10 80 
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Table 7. Summary of recommendations for redesign of specific matrices monitored in 
San Francisco Bay. 
 
Element Current Design Recommended Option Comments 
  No. of Sites No. of Sites   
Water 
Chemistry 

31 22 Recommend to reduce 
the number of sites. 
 

Sediment 
Chemistry 

47 47 in summer, 27 in 
winter 

Recommend to continue 
annual sampling, but 
alternating between wet 
and dry seasons.  

Sediment 
Toxicity 

27 27 Strong interest in 
determining causes of 
toxicity on an annual 
basis.  Toxicity signal is 
stronger in winter. 

Benthos 0 27 Benthos samples will be 
collected at the same 
sites as sediment 
toxicity on an annual 
basis. 

Bivalves 11 11 Recommend to reduce 
frequency to biennial 
sampling. 

Sport fish 5 5 Stay with the status quo.  
Five sites sampled 
triennially. 

Small fish 8 as a pilot study TBD Recommended annual 
small fish sampling.  To 
be expanded in 2008. 

Double-crested 
Cormorant  
Eggs 

3 3 Recommend to add 
matrix to Status and 
Trends. Monitor three 
stations triennially. 

Tern Eggs Pilot study in 2002 
and 2003 

TBD Tern egg monitoring 
has largely been 
conducted at one colony 
in the South Bay.  This 
triennial element will be 
developed in concert 
with the USGS. 
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Element Current Design Recommended Option Comments 
  No. of Sites No. of Sites   
Large 
Tributary 
Loading and 
Guadalupe 
loading 

Pilot study 1 Tributary loads from the 
Delta and the 
Guadalupe river will be 
monitored on a triennial 
basis 

Small 
Tributary 
Loading 

Pilot study                     1 Rotate through Bay 
Area watersheds to 
quantify loads from 
small watersheds on an 
annual basis. 

Causes of 
Toxicity 
(formerly 
Episodic 
Toxicity) 

Variable                 TBD Recommended that this 
element be conducted 
every two years. 

USGS 
Hydrography 
Monitoring 

36                   36 Recommended that this 
element be continued at 
its current level on an 
annual basis. 



RMP Power Analysis 2006 

 38 

Table 8. Evaluation of power to determine that pollutant levels in water are below management thresholds. Future PCB and mercury 
concentrations were simulated by adjustment of the mean to 20% below their respective thresholds as described in the Methods. 
 
 

  
Total PCBs 

(Total) 
Mercury  

(Total in TSS) 
Copper 

(Dissolved) 
Nickel 

(Dissolved) 
Lead 

(Dissolved) Current Design 
Segment Number of Samples Required to Achieve 80% Power   

Lower South Bay 5 12 2 2 2 4 
South Bay 8 17 3 2 2 8 

Central Bay 19 23 3 2 2 4 
San Pablo Bay 23 14 2 2 Insufficient data 4 

Suisun Bay 11 9 2 2 3 4 
              

Segment Number of Samples Required to Achieve 95% Power   
Lower South Bay 7 20 2 3 2 4 

South Bay 12 28 4 3 3 8 
Central Bay 32 40 3 3 2 4 

San Pablo Bay 40 23 2 2 Insufficient data 4 
Suisun Bay 18 14 2 2 3 4 
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Table 9. Power analysis results for detecting long-term trends in PCBs and DDT in sediment. Results are based on estimated inter- 
and intra-annual variability for each segment, and assumed rates of decline. Red text represents the current monitoring design for each 
segment, and the blue areas highlight results that are > 95% power. 
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Lower South Bay Suisun Bay

Sampling Interval (years) Sampling Interval (years) Sampling Interval (years) Sampling Interval (years) Sampling Interval (years)

South Bay

Scenario: 2 100% 97% 92% 78% 67% 100% 99% 97% 85% 74% 100% 94% 87% 73% 60% 96% 75% 64% 43% 36% 76% 51% 37% 26% 23%

PCBs 4 100% 100% 98% 95% 89% 100% 100% 100% 99% 94% 100% 99% 97% 91% 86% 100% 95% 88% 73% 61% 93% 71% 64% 50% 43%

Sediment 6 100% 100% 100% 97% 95% 100% 100% 100% 100% 99% 100% 100% 100% 96% 92% 100% 97% 95% 86% 78% 98% 84% 74% 63% 55%

20 Year 8 100% 100% 100% 98% 96% 100% 100% 100% 100% 99% 100% 100% 100% 97% 95% 100% 99% 97% 90% 84% 99% 88% 82% 68% 62%

3.5% Annual Decline 10 100% 100% 99% 99% 97% 100% 100% 100% 100% 100% 100% 100% 100% 99% 96% 100% 99% 98% 93% 89% 100% 92% 88% 72% 67%
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Mercury 4 100% 94% 87% 83% 76% 100% 100% 100% 97% 89% 100% 100% 99% 99% 95% 100% 100% 99% 98% 93% 76% 48% 35% 34% 22%

Sediment 6 100% 96% 91% 90% 81% 100% 100% 100% 100% 96% 100% 100% 100% 100% 98% 100% 100% 99% 99% 97% 91% 60% 46% 44% 34%

30 Year 8 100% 98% 92% 92% 84% 100% 100% 100% 100% 99% 100% 100% 100% 100% 99% 100% 100% 100% 99% 97% 96% 74% 60% 55% 43%

1% Annual Decline 10 100% 97% 94% 93% 85% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 100% 100% 100% 100% 97% 98% 83% 67% 65% 45%

12 100% 98% 94% 93% 88% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 100% 100% 100% 100% 98% 98% 89% 73% 68% 54%S
a
m

p
le

s
/y

e
a
r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



RMP Power Analysis 2006 

 40 

Table 10. Power analysis results for detecting long-term trends in PCBs and DDT in sport fish. Results are based on estimated inter- 
and intra-annual variability across all sites, and assumed rates of decline. Red text represents the current monitoring design for each 
segment, and the blue areas highlight results that are > 95% power. 
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Shiner Surfperch White Croaker

Sampling Interval (years) Sampling Interval (years)

Scenario: 3 100% 100% 100% 100% 100% 100% 100% 100% 100% 98%

PCBs 6 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Sportfish 9 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

20 Year 12 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

3.5% Annual Decline 15 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

18 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%S
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Mercury 6 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Sportfish 9 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

30 Year 12 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

1% Annual Decline 15 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

18 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%S
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Table 11. Evaluation of power to detect pollutant levels in sport fish that are below thresholds. Future mercury concentrations in white 
croaker and PCB concentrations in croaker and shiner surfperch were simulated by adjustment of the mean to 20% below its threshold 
as described in the Methods. 
 
 

  Mercury Total PCBs Current Design 
Species Number of Samples Required to Achieve 80% Power    
Shiner Surfperch 3 > 50 12 
White Croaker 24 > 50 12 
            
Species Number of Samples Required to Achieve 95% Power   
Shiner Surfperch 4 > 50 12 
White Croaker 41 > 50 12 
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Table 12. Power analysis results for detecting long-term trends in PCBs, DDT, and mercury in 
Double-crested Cormorants. Results are based on estimated inter- and intra-annual variability 
across two years of data collected at Richmond Bridge, and assumed rates of decline. Blue and 
green areas highlight results that are > 95% and > 80% power, respectively. 
 
 

                  

Double-crested Cormorants

Sampling Interval (years)
1 2 3 4 5

Scenario: 1 100% 96% 82% 51% 31%

DDT 2 100% 100% 99% 93% 88%

Cormorants 3 100% 100% 99% 98% 95%

20 Year 4 100% 100% 100% 98% 96%

8% Annual Decline 5 100% 100% 100% 98% 98%

Scenario: 1 79% 44% 31% 18% 14%

DDT 2 95% 73% 67% 56% 52%

Cormorants 3 98% 83% 77% 67% 62%

20 Year 4 96% 88% 83% 74% 69%

4% Annual Decline 5 98% 89% 85% 76% 72%

Scenario: 1 86% 51% 36% 20% 13%

PCB 2 97% 81% 72% 58% 53%

Cormorants 3 98% 88% 82% 70% 67%

20 Year 4 99% 91% 87% 77% 72%

6% Annual Decline 5 99% 93% 89% 80% 76%

Scenario: 1 99% 82% 62% 52% 32%

Mercury 2 100% 97% 88% 85% 70%

Cormorants 3 100% 99% 94% 93% 83%

30 Year 4 100% 99% 97% 96% 88%

3% Annual Decline 5 100% 100% 98% 97% 90%

Scenario: 1 29% 17% 11% 10% 8%

Mercury 2 54% 36% 29% 27% 22%

Cormorants 3 65% 47% 38% 37% 31%

30 Year 4 72% 55% 44% 43% 39%

1% Annual Decline 5 76% 58% 50% 50% 43%
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Evaluation of PCB Trends in Bivalves to Determine the Power of Future Bivalve 
Monitoring 
 
Ben Greenfield, SFEI (ben@sfei.org) 
 
Background and Description of Data  
 
The Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), in 
combination with other monitoring programs, has collected considerable monitoring data 
on contaminant concentrations and other chemical parameters in water, sediments, and 
animal tissues in San Francisco Bay.  Of the various types of matrices collected, bivalves 
have the longest time-series available.  In some cases, one to two data points have been 
collected every year since 1981.  However, these data may exhibit serial autocorrelation, 
violating required assumptions for standard linear modeling approaches, such as linear 
regression.  Furthermore, collection dates have not been evenly spaced, with some years 
sampled in both the spring and the fall, and other years only sampled in the fall.  This 
variability in sampling design, although frequently observed in long-term monitoring 
programs, makes it more difficult to apply standard time-series analysis methods. 
 
In many cases, data exhibit apparent linear trends. Figure 1 depicts a time-series of 
polychlorinated biphenyl (PCB) concentrations in transplanted bivalves placed at Pinole 
Point in San Francisco Bay. PCB concentration in bivalves are presented on a log-scale. 
Linear regression analysis of these data indicated a declining trend over the entire 
sampling period. The regression model was based on log transformed concentration data, 
to minimize variance heteroskedasticity. Significant serial autocorrelation is not present 
in the data set (Figure 2), indicating that ARIMA models are not necessary. This is 
fortunate, given the fact that the limited sample size (N = 25) and inconsistent annual 
sampling frequency would have made application of time-series models very difficult.  
Similar results of a log-linear declining trend with no serial autocorrelation were 
observed for bivalves transplanted to another site (Treasure Island). However, there is 
strong correlation among the different sampling sites in seasonal PCB concentration 
results (e.g., Figure 3). For a number of sites, data collection only began in 1994, making 
detection of long-term trends more difficult (e.g., Figure 4). The use of least-square 
methods allows assessment of the simultaneous probability of observing declining trends 
at multiple sites. 
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Figure 1. Total PCB concentrations in Mytilus sp. bivalve mollusks collected from Pinole 
Point in San Francisco Bay between 1981 and 2000. All samples are bivalves collected 
from a relatively uncontaminated location and transplanted to Pinole Point for 3 to 6 
months prior to collection (Gunther et al. 1999). 
 Bivalve lipid wt PCB at Pinole Pt
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Figure 2. Plot of autocorrelation function for lags one through five using the residuals of 
the regression model in presented in Figure 1. 
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Figure 3. Total PCB concentrations in Mytilus sp. bivalve mollusks simultaneously 
collected from Yerba Buena Island, vs. Pinole Point. 
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Figure 4. Total PCB concentrations in Mytilus sp. bivalve mollusks collected from the 
Dumbarton Bridge in San Francisco Bay between 1994 and 2000. All samples are 
prepared as described in Figure 1. 
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General approach 
 
Linear regression was used to determine PCB trends in bivalves of San Francisco Bay. 
The goal was to determine the most likely value and range of possible values for the rate 
parameter that determine concentration declines of PCBs in the Bay. Analyses were 
performed on log-transformed PCB concentrations. Therefore, the results for the slope 
term represent a parameter for the exponential decay function. Both the slope and 
intercept terms may vary among sites due to different proximity from sources (and hence 
different concentrations or rates of change in concentration). To test this possibility, we 
tested for the effect of sampling station on slope and intercept using general linear 
modeling and analysis of covariance.  
 
Finally, after fitting the best model, we used the residuals to estimate variability intrinsic 
to the bivalve data. This was used in power analysis to estimate the impact of changing 
sampling frequency on ability to detect long-term future trends with RMP bivalve 
monitoring.  
 
Statistical methods 
 
Prior to modeling, data were prepared by converting collection dates to a continuous 
variable representing time rounded to the nearest year and month (e.g., dates from March 
15 to April 15, 1993 were converted to 1993.25). Date values were centered by 
subtracting the mean of all dates (mean = 1995.0811; N = 148). Bivalve concentrations 
were log10 transformed to stabilize variances, and because declines of legacy 
contaminants often follow exponential decay functions.  
 
Linear regression was performed using standard parametric methods (Draper and Smith 
1998) in SYSTAT 11.0 (Wilkinson et al. 1996), following the model: 
 
Y = α + βX + ε 
 
where α represents the y-intercept parameter, β represents the slope parameter, ε 
represents a normally distributed variance term, X represents the centered date data, and 
Y represents the bivalve tissue concentration (lipid weight and log transformed).  
 
General linear models using least squared regression indicated a significant effect of 
station on the bivalve concentrations, but not a significant effect of station on rate of 
decline. Based on this observation, dummy variables were created for changes in 
intercept (i.e., α) due to station, but not changes in slope (i.e., β) due to station. Analysis 
of covariance simulations were then performed following the model: 
 
Y = α0 + αiDi + βX + ε 
i = [1, 2, 3, 4, 5, 6] 
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where α0 represents an overall y-intercept parameter for the model, αi represents six 
parameters for differences in y-intercept from α0 as a function of sampling station, Di 
represents a categorical (i.e., dummy) variable for six of the seven stations.  
 
Results and Discussion 
 
Linear regression 
 
The parameter and confidence intervals were well estimated with low variability. The α 
(intercept) estimate was 3.349 with confidence intervals3 (2.5% and 97.5%) of 3.308 and 
3.389, respectively. The average β (slope) estimate was -0.0266 with confidence intervals 
of -0.0335 and -0.0197. The linear regression model was highly significant (p < 0.0001) 
but only explained a modest portion of the variability in the data set (R2 = 0.29). In 
summary, the least squared regression indicated a statistically significant decline in PCBs 
in bivalves across the entire data set. 
 
Least squared general linear models were generated to determine whether overall station 
effects were present for slope or intercept terms. Results indicated that in addition to the 
α and β, a highly significant station effect was observed for the overall model (p for 
station effect < 0.0001; final model R2 = 0.52). A significant station*slope interaction 
was not present (f-ratio = 1.27; p = 0.28).4 The interpretation of this is that overall, there 
was a significant difference in intercepts but not slopes among the stations examined. 
Another way of stating this is that the bivalves in different stations were sometimes 
different in PCB concentration overall, but that the rate of log-linear decay of PCBs did 
not vary among stations. Graphical analysis supported this interpretation, with the best 
linear fits for each station being generally similar in slope but having variable intercepts 
(Figure 5). 
 
Linear regression with dummy variables (Analysis of covariance) 
 
Based on the general linear model results, analysis of covariance was performed to 
determine which stations had significantly different y-intercepts due to station effects. As 
described in methods, six dummy variables were incorporated into the model (D1,2,…6), 
representing differences in the intercept term (α1,2,…6). A backwards stepwise elimination 
model (p to remove of 0.05) retained three parameters for changes in intercept (α2, α4, 
and α5). The final least squared regression model R2 was 0.49, indicating that the model 
accounted for about half of the variability in the data set.  Based on these statistical 
findings, we can conclude that Fort Baker/Horseshoe Bay, Pinole Point, and Red 
Rock/Richmond Bridge had significantly lower bivalve PCB concentrations over time 
than the other stations (Table 1).  
 
 
 
                                                
3 Calculated by adding or subtracting 2*SE to/from the parameter estimate 
4 This result was also obtained running a forward addition stepwise regression model, with dummy 
variables for effect of each individual station on slope or intercept. The final model included intercept 
effects but not slope effects. 
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Table 1. Least squared regression results for the final model. Only significant parameters 
were included. 
 
Parameter Mean SD Effect 
alpha 3.459 0.023 Intercept (Baseline) 
alpha2 -0.300 0.053 Fort Baker/Horseshoe Bay 
alpha4 -0.265 0.047 Pinole Point 
alpha5 -0.211 0.057 Richmond Bridge/Red Rock 
beta -0.026 0.003 Slope 
sigma 0.044 NA Variance 

 
To evaluate the parameter estimates in a parsimonious model, the analyses was re-run 
including only parameters that were significantly different from zero. This model (Y = α0 
+ α2D2 + α4D4+ α5D5+ βX + ε) would be expected to have more accurate estimates for 
all parameters, because non-significant or marginally significant parameters would not 
exert undue influence on the important parameters.  
 
These results may be used to estimate rate of decay of PCBs in bivalve tissues, and also 
to predict future rates of decay. The curve based on best model fit indicates a half-life of 
approximately 12 years (Figure 6). Such analyses can be used to estimate probable 
changes in PCBs over time, to develop management plans for the future (Davis 2004, 
Greenfield and Davis 2005). 
 
Figure 5. Graphical depiction of trend data with best fit linear curves applied to the 
separate stations. 
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Figure 6. Bivalve trends predicted by the final selected model. Baseline represents trends 
for most stations (Yerba Buena Island, Dumbarton Bridge, Hunter’s Point, and Redwood 
Creek). Other trends are as indicated. Dotted lines past 2004 represent future forecasted 
concentrations. 
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Power Analysis 
 
To run the power analysis, estimates of both the within year and among year variability in 
the data set were calculated. Based on the above modeling efforts, I determined that 
variability could be inflated due to differences in intercept among station, as well as the 
trend in the data. Therefore, to estimate variability in the data, I obtained the residuals 
from the following regression equation:5 
 
log(PCB concentration) = α0 + α2D2 + α4D4+ α5D5+ βX + ε 
 
Recall that α0 is an intercept term, α2, α4, and α5 are changes in intercept for Fort 
Baker/Horseshoe Bay, Pinole Point, and Red Rock/Richmond Bridge, respectively, and β 
is a slope term for change in time. X represents time, which has been centered by 
subtracting 1995.0811. 
 

                                                
5 Note that this is the same as the final selected model from the least squared regressions in the previous 
section. 



Appendix I RMP Power Analysis 2006 
 

  Appendix I - 8 

These residuals should indicate the intrinsic variability in the data set, irrespective of date 
or sampling location. Plotting these residuals, we see that they are generally similar in 
average value across stations (Figure 7). There are some differences in variability across 
stations (Figure 10). Looking at the residuals across time, this variability appears to be 
due to some particularly low PCB years for some of the stations (Figure 8). For example, 
1997 and 1999 had low residuals for Hunter’s Point/Alameda and Yerba Buena Island. 
Perhaps the high flood event in 1997 reduced PCB bioavailability in those years. 
 
Figure 7. Residuals vs. station for estimating variance for power analysis. 
 

D
B

F
o
rt
B
a
ke
rH
B

H
u
n
tP
tA
la
m
e
d

P
P

R
B
R
R

R
C

Y
B
I

STATION

-1.0

-0.5

0.0

0.5

R

E

S

I

D

U

A

L

 
These residuals were used to estimate interannual (among-year) and intraannual (within-
year) variability for the bivalves. These variability estimates are required for the Matlab 
power analysis regression program. To estimate among-year variability, I took the 
average residual from each year and determined the standard deviation of these averages. 
To estimate within-year variability, I took the standard deviation of all the residuals 
collected within each given year, and then averaged all of these standard deviations. This 
resulted in an estimated within-year variability (standard deviation) of 0.116 and an 
estimated among-year variability (standard deviation) of 0.175. Note that the overall 
standard deviation of the residuals was 0.207. 
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These two components of variability were then combined into the MatLab trend 

detection program and 1000 simulations were run. A scenario of 50% decay in 20 years 
was run, with the power being equivalent to the ability of a linear regression model to 
detect a significant decline at p < 0.05. As summarized in Figure 9 and Table 2, using 
these assumptions, the bivalve monitoring would have plenty of power to detect long-
term declines in PCBs in the Bay. In particular, in all scenarios, the power was well 
above 80% (often closer to 100%) (Table 2, Figure 9). If we were to treat the stations as 
independent replicates6, a reduction in number of stations would not have any substantive 
effect on the ability to detect a log-linear decay over the 20 year time period. A reduction 
of the sampling frequency to every 2 or even 3, 4, or 5 years would not impair the ability 
to determine log-linear trends on a long-term basis. This result might change if the 
variance of other compounds (DDTs or PBDEs) turns out to be greater than that observed 
for PCBs. 
 
Figure 8. Residuals from the best fitted model, vs. date, with symbols representing 
stations.  
 

1980 1990 2000 2010

DATE

-1.0

-0.5

0.0

0.5

R

E

S

I

D

U

A

L

YBI

RC

RBRR

PP

HuntPtAlamed

FortBakerHB

DB

STATION

 
 

                                                
6 Note that the Stations are NOT independent, as they strongly track each other (e.g., Figure 3). This 
statistical issue has not been addressed in this exercise. 
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Table 2. Power of the RMP bivalve sampling design to detect a significant (p < 0.05) 
decline when a 50% decline occurs over 20 years. Results are based on variance 
estimates from the historic RMP and State Mussel Watch PCB data, and other 
assumptions described in the text. 
   

 Sampling interval (sample every X years) 
Samples/event 1 2 3 4 5 

4 100% 99% 97% 91% 85% 
7 100% 100% 98% 96% 92% 
10 100% 100% 100% 96% 95% 
13 100% 100% 99% 97% 94% 
16 100% 100% 100% 98% 95% 

 
 
Figure 9. Matlab output for power analysis of bivalves. Model variability estimates are 
based on PCB data from 7 RMP/SMW monitoring stations. Model is run for a range of 
sampling frequencies (sampling every 1 to 5 years) and sample sizes (3 to 16 samples per 
sampling period). 
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Statistical Power Analysis of RMP Bivalve Tissue 
Samples 
 
Andy Jahn, Statistical Consultant 

Introduction 
Statistical power is the complement of the type-two error rate, the probability of 
accepting the null hypothesis of no effect when, in fact, the effect exists.  Thus in 
designing a program to have 95% power to detect an effect of a given magnitude, we 
intend to effect a type-two error rate ≤ 5%, or no greater than the customary type-1 error 
rate used in ecological work.  Power is positively affected by the type-1 error rate (here 
held constant), size of the effect sought, and the size of the sample, and negatively 
affected by error variance.  Ignoring the type-1 error rate, the factors under control of the 
investigator are the effect size, the sample size (usually equated with cost), and a 
sampling design that minimizes the proportion of the variance that ends up in the error 
term7.  These factors will be explained, with examples, in the next section. 

My task was to determine statistical power of the bivalve data set under future scenarios: 
 

• Scenario 1. Power to detect a 50% decline in contaminant concentration 
over a 20-year monitoring period (3.4% per year average linear decline). 

• Scenario(s) 2: Explore ways to reduce sampling costs while maintaining 
95% power to detect a decline rate of 3.4% per year. 
A secondary task was to estimate the recent rates of decline in PCBs, 
DDTs, and PBDE047. 

Methods 
I used files of combined State Mussel Watch (SMW) and Regional Monitoring Program 
(RMP) data for California mussel supplied by Ben Greenfield and Jay Davis (PCBs) and 
Jennifer Hunt (DDTs and PBDE047).  Only dry-weather data (June through October) 
were accepted.  Lipid-normalized contaminant data, on a dry weight basis were log-
transformed prior to analysis. 
In the case where an investigator has analyzed a data set, accepted the null hypothesis, 
and wishes to know the power to detect an effect if one were present, the assumptions of 
the power analysis are the same as those attending the original hypothesis test, and results 
of a power analysis can be accepted with the same confidence.  However, it is often the 
case that the investigator wishes to predict the power of a future data set.  This is the 
situation here.  To do this, we must make an assumption about the nature of the future 
                                                
7 As noted by Stevens (Appendix 4), this definition implies that the type of test and the form of the null and 
alternative hypotheses are already given.  Explicitly, the test assumed here is an ANOVA in which the 
variance is partitioned into a fixed SITE effect and a linear trend in time called YEAR.  The null hypothesis 
is that the slope due to YEAR is zero, and the alternative is that the slope is negative, i.e., that the tissue 
analyte concentration is declining. 
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data, i.e., that its variance structure will closely resemble that of the existing data set, 
except to the extent imposed by the stipulated effect size that we project on the data.  In 
the present case, we maximize the power to detect a trend by first partitioning the 
variance into spatial and temporal components, as shown below (Table 1).  The relative 
effects of site differences on future contaminant concentrations is impossible to know, 
and so acceptance of the analysis requires faith that the future will look like the recent 
past in this regard, i.e., that the ratio of variance due to SITE (SSSITE) to that in the 
residual error (SSError) will remain the same8 - in this example, 244:106.  (I also assumed 
that, unlike the recent past, there will be no missing data as we go forward, i.e., that each 
analyte will generate a value at each site in each year.) 

As shown in Table 1, the design of the sampling is basically that of a one-way ANOVA 
on sampling site (SITE) with time (YEAR) as a covariate.  In effect, we are factoring out 
site differences to test for trends through time.  To determine power, I used the methods 
of Cohen (1977), in which the effect size in the power analysis is calculated as L, the 
product of the degrees of freedom in the error term times a quantity called f2, the ratio of 
the proportion of variance due to YEAR (PVYEAR) to PVError.  L is thus a sort of signal-
to-noise ratio, scaled to sample size. 
 

Table 1. Partitioning of variance of log-transformed PBDE047 in California mussel from 
seven sites sampled in 2002, 2003, and 2005 (some sites dropped in some years due to 
missing data, or because the site had data for only one year; n=20). 

Source Sum-of-Squares PV df 

SITE .244 .480 6 

YEAR .158 .311 1 

Residual Error .106 .209 12 

Total .508 1  

 
From Table 1, we obtain f2 = .311/.209 = 1.49, and L=f2 • df Error = 1.49 • 12 = 17.9.  
From  Cohen's Table 9.3.2  for an ANCOVA with a type-1 error rate of 5% with a single 
covariate, we obtain power >99%.  This is in accord with the F test for Table 1, which 
gives a highly significant result (p≈0.001) for the effect of YEAR.   

                                                
8 The discerning reader will note, as has Stevens (Appendix 4), that part, or even all of the trend in a short 
time series can be due simply to random error.  In using this empirical estimate of the residual error 
proportion, my method probably over-estimates power, especially for PBDE047 (see the discussion of the 
slope in Figure 1, next section).  For DDTs and PCBs, based on 13 and 19 years, respectively, the probable 
error is relatively small, and may be compensated for by my use of the non-directional F test for slope.  
That is, for the one-sided tests anticipated in the future (see Footnote 1), the rejection zone for the F tests 
will be double the size used here. 
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From Table 1 we can also calculate a partial correlation coefficient for the effect of 
YEAR on log PBDE concentration by dividing the sum of squares for YEAR by the sum 
of SSYEAR and SSError, and taking the square root, i.e., r = (.158/(.158+.106))1/2 = -0.77 
(the sign will be confirmed in the next section).  The power analysis of Scenario 1 
proceeds in the reverse direction, by turning the slope of the projected decay rate into a 
correlation coefficient, and then adjusting the SSYEAR (leaving SSSITE and SSError 
unchanged, as discussed above) in Table 1 and re-calculating L: 
A slope of 3.4% per year equates in log space to a regression coefficient (β) = -0.015 (log 
of 0.966).  We then use the relation r = β • (σx/σy), where σx and σy are the standard 
deviations of YEAR (x) and the part of the PBDE concentration not due to SITE effects 
(estimated as the std. dev. of the residuals from a one-way ANOVA of log PBDE vs. 
SITE).  From the PBDE data used to generate Table 1, we get σy = 0.118.  The standard 
deviation of 20 sequential digits is 5.916, leading to r= -0.015 • 5.916/0.118 = -0.752.  
Squaring this result (R2 = .566) and doing some algebra yields Table 2, from which we 
obtain f2 = .283/.217 = 1.304 and L = 132 • f2 = 172.  Power under Scenario 1 is expected 
to be > 99%.  This is not a surprise, because the modeled r (-.75) is only slightly less than 
the observed r (-.77), which generated a highly significant ANCOVA result with only 
three years of data (12 df in the error term vs. 132 under Scenario 1).  Actual sums of 
squares in a 20-year data set will be much larger than the numbers in Table 2, but their 
ratios (PVs) under our assumptions are expected to be about as indicated.  Scenario(s) #2 
are calculated simply by figuring the degrees of freedom for various numbers of 
samplings and stations over a 20-year time period, as given in the results. 
 

Table 2. Scenario 1 for PBDE047, in which a which a 50% decline in tissue 
concentration is modeled by adjusting SSYEAR so that the ratio of SSYEAR to the sum of 
SSYEAR + SSError = the modeled partial R2 for YEAR. 

Source Sum-of-Squares PV df 

SITE .244 .500 6 

YEAR .138 .283 1 

Residual Error .106 .217 132 

Total .488 1  

 

Results 
The results of the power projections are summarized in the last section, both for clarity 
and for the sake of readers with limited time for details. 
PCBs 
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The RMP sum of PCBs, adjusted for lipid content and expressed as µg PCB per kg tissue, 
produced a data set spanning the years 1983 through 2003 with coverage of seven sites 
during the dry season.  Geometric mean PCB concentration decreased from about 4500 
ppb in 1983 to about 1900 ppb in 2003, for an average rate of -4.2% per year, somewhat 
greater than the rate of decline modeled in Scenario 1.  The PCB file has month 
information for all the samples, so it was possible to express the date as a decimal 
fraction of the year (DYEAR).  The variance partitioning is shown in Table 3.  Here, L is 
134 and Power >99%, in keeping with a highly significant ANCOVA.  
The std. dev. of the residuals of a one-factor ANOVA on SITE is 0.219, giving a modeled 
variance structure, as calculated in the Methods section, of SSYEAR= 0.626, PVYEAR = 
.164, PVError= .362, and f2 = 0.453.  For a 20-year program with no missing data going 
forward, we would have df Error = 132 and L=60 for Power > 99%.  Ninety-five percent 
power for an F test on an ANCOVA with a single covariate would be obtained when L = 
13.34, which with f2 = 0.453  would require 29 degrees of freedom.  We could 
approximate this by sampling every other year for 20 years at only 4 stations, giving 
dfError =34 and Power = 97%.  We might not want to reduce the number of stations so 
drastically, but it is obvious that there is a good deal of safety from the occasional 
missing data point, even with analyzing for PCBs every other year. 
 

Table 3. Partitioning of variance of log-transformed sum of PCB compounds in 
California mussel from seven sites sampled from 1983 to 2003 (some sites dropped in 
some years due to missing data, n=82). 

Source Sum-of-Squares PV df 

SITE 1.811 .318 6 

DYEAR 2.504 .439 1 

Residual Error 1.381 .243 74 

Total .508 1  

 

DDTs 
After filtering for dry-weather data, the data set for DDTs reduced to RMP samplings 
from 1993 to 2005.  Overall geometric mean DDT concentration ranged from 776 ppb in 
1993 to 234 in 2005 for an average annual decline of -8.8%, far more rapid than the 
decline of -3.4% per year modeled in Scenario 1.  The variance partitioning is shown in 
Table 4.  Here, L is 102 and Power >99%, in keeping once again with a highly significant 
ANCOVA. 

 



Appendix II  RMP Power Analysis 2006 
 

  Appendix II - 5 

Table 4. Partitioning of variance of log-transformed sum of DDTs in California mussel 
from seven sites sampled from 1993 to 2005 (some sites dropped in some years due to 
missing data, n=79). 

Source Sum-of-Squares PV df 

SITE .592 .126 6 

YEAR 2.428 .515 1 

Residual Error 1.691 .359 71 

Total 4.711 1  

The std. dev. of the residuals of a one-factor ANOVA on SITE is 0.230, giving a modeled 
variance structure, as calculated in the Methods section, of SSYEAR= 0.296, PVYEAR = 
.230, PVError= .656, and f2 = 0.175.  For a 20-year program with no missing data going 
forward, we would have df Error = 132 and L=23 for Power > 99%.  Sampling every other 
year would give 91% power.  Sampling every year at four sites would give 95% power, 
and sampling 2 out of every 3 years (14 out of 20) at all seven sites would give 97% 
power. 

PBDEs 
PBDEs have only been sampled at seven sites since 2002 (Table 1).  The average tissue 
concentration of PBDE047 in 2005 was 69% of that in 2002 (Figure 1), for an average 
annual decline of -8.8%.  The back-transformed fitted slope from a log-linear regression 
is -15% with a 95% confidence band from -4% to -24%.  (Of course, with such a small 
data set, there is no assurance that the trend is log-linear, and there is little basis for 
projecting it forward in time.) 
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Figure 1. Scatter plot of PBDE concentration by year, all data. 
As described in the Methods section, power for this small data set is >99%, in keeping 
with a highly significant ANCOVA.  From Table 2,  f2 = 1.304 and the power to detect a 
50% decline over 20 years is also >99%.  Even under the reduced slope of Scenario 1, a 
three-year sampling program at all seven stations would have >99% power to reject the 
null hypothesis; the same program with four missing data points scattered among years 
and sites would have 95% power, and a 4-year program with four sites would give 96% 
power. 
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Summary 
Power for the three tested classes of organic compounds in California mussel tissue is 
very good (Table 5), even under scenarios of reduced sampling frequency and reduced 
number of sites.  In all three analytes, the observed rate of reduction in tissue 
concentration was greater than 3.4% per year, which is equivalent to a 50% decline over 
20 years. 
 

Table 5. Summary of the power analyses assuming a 50% decline in tissue concentration 
over a 20-year period.   

Analyte # Years* # Sites Power (%) 

PCBs 20 7 >99 

" 10 7 >99 

" 10 4 97 

DDTs 20 7 >99 

" 10 7 91 

" 14 7 97 

" 20 4 95 

PBDE047 20 7 >99 

" 10 3 >99 

" 4 4 96 

* The scenarios are based on sampling every year (20) or every other year (10 of 20) except for 
the third scenario for DDTs, in which a two years on, one off schedule (14 of 20) is envisioned. 

 

Reference 
Cohen, J. 1977. Statistical Power Analysis for the Behavioral Sciences. (Rev.) Academic 

Press, 474 pp. 
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 Appendix III.1 An example of the format for presentation of power analyses to the TRC. Description of RMP management 
objectives can be found in the Appendix III.2. 
 
 

Design

Number 

of sites Frequency Season 1 2 3 4 5

95% Trend 

Power in Each 

Segment LSB SB CB SPB SUB

95% Threshold 

Power in Each 

Segment LSB SB CB SPB SUB Cost/yr

Status Quo 31 Annual Summer PCBs Hg on SSC $450,000

Hg PCBs

DDTs Ni

Pb

4 sites per 

segment 25 Annual Summer PCBs Hg on SSC $400,000

Hg PCBs

Se Cu

DDTs Ni

Pb

3 sites per 

segment 20 Annual Summer PCBs Hg on SSC $340,000

Hg PCBs

Se Cu

DDTs Ni

Pb

Biennial 31 Biennial Summer ? PCBs Hg on SSC 2 2 2 2 2 $225,000

Hg PCBs 2 2 2 2 2

Se Cu 2 2 2 2 2

DDTs Ni 2 2 2 2 2

Pb 2 2 2 2 2

Triennial 31 Triennial Summer ? PCBs Hg on SSC 3 3 3 3 3 $150,000

Hg PCBs 3 3 3 3 3

Se Cu 3 3 3 3 3

DDTs Ni 3 3 3 3 3

Pb 3 3 3 3 3

LEGEND KEY High value for this objective Power greater than 95% 2 Assessment made every second year

Medium value for this objective 3 Assessment made every third year

Some limited value for this objective

Objectives Addressed
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Appendix III.2 RMP OBJECTIVES AND MANAGEMENT QUESTIONS 
 
Every five years, an outside group of scientific experts reviews the RMP to assure its 
fulfilling its objectives and providing useful and timely information regarding the 
Estuary.  As part of the 2003 Program Review, the Review Panel stated “… that the 
Program must continue to evolve to ensure its long-term relevance.” In response to this 
comment, the RMP reviewed lessons learned from data collected over the last ten years 
and developed a new set of management objectives based on this data and water quality 
management questions.  These new management objectives were reviewed by the 
Technical Review and Steering Committees and approved in 2005. 
 
 
1. Describe the distribution and trends of pollutant concentrations in the 

Estuary 
1.1 Which pollutants should be monitored in the Estuary, in what media, and at 

what frequency? 
1.2 Are pollutants of concern increasing, decreasing, or remaining the same in 

different media?   
1.3 How are contaminant patterns and trends in the Estuary over time affected by 

remediation and source control or pollution prevention in the watersheds? 
1.4 Do pollutant concentration distributions indicate particular areas of origin or 

regions of potential ecological concern? 
1.5 What effects on beneficial uses or attainment of Water Quality Standards will 

occur due to large-scale habitat restoration in the Estuary in decades to come?  
 

2. Project future contaminant status and trends using current understanding of 
ecosystem processes and human activities 
2.1 Can reasonably accurate recovery forecasts be developed for major segments 

and the Estuary as a whole under various management scenarios? 
2.2 Can potential impairment and degradation be better anticipated in the face of 

projected changes in land and water use and management, as well as product 
use and disposal? 

2.3 Which pollutant categories are predicted to accumulate in the Estuary faster 
then they can be assimilated? 

2.4 Do pollutant trends reflect historical changes in use patterns, transport and 
transformation processes, or control actions? 

2.5 How will the importance of each pathway change through time under various 
management and development scenarios? 

2.6 What is the projected future loading of pollutants of concern under various 
management and development scenarios? 

2.7 What are the likely consequences of various management actions or risk 
reduction measures? 

2.8 Do pollutants show existing distributions that fit our current understanding or 
models of their origin, loads, and transport? 
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2.9 What changes in loadings or ecosystem characteristics (e.g., extent of restored 
tidal marsh, Estuary circulation and flushing, food web shifts) would reduce 
or increase pollutant exposures and effects? 

2.10 How are distributions and long-term trends in pollutants affected by current 
and predicted estuarine processes (e.g. sediment erosion, deposition, river 
inflows)? 

   
3. Describe sources, pathways, and loading of pollutants entering the Estuary 

3.1 Where are/were the largest pollutant sources, in what context are/were these 
pollutants applied or used, and what are/were their ultimate points of release 
into the aquatic environment? 

3.2 What are the circumstances and processes that cause the release of pollutants 
from both internal and external source areas? 

3.3 Once released, how do pollutants travel from source areas to the Estuary, what 
are the temporal and spatial patterns of storage, and are they transformed 
along the way or after deposition? 

3.4 What is the annual mass of each pollutant of concern entering the Bay from 
each pathway? 

3.5 Can data with high temporal resolution from a few watersheds be projected to 
other watersheds and the Basin as a whole? 

3.6 For each pollutant of concern, what forms are released from each pathway and 
what are the magnitude and temporal variation of concentrations and 
loadings? 

3.7 How do loads change over time in relation to management activities? 
3.8 What is the relative importance of pollutant loadings from different sources 

and pathways, including internal inputs, in terms of beneficial use 
impairment? 

 
4. Measure pollution exposure and effects on selected parts of the Estuary 

ecosystem (including humans) 
4.1 How are emerging problems reflected in exposure and effects measurements?  
4.2 Which (co-)factors (e.g., food web structure) influence exposure and effects of 

specific pollutants on biota? 
4.3 What ecological risks are caused by pollutants of concern? 
4.4 What human exposure to pollutants of concern results from consumption of 

fish and game? 
4.5 To what extent does exposure to multiple pollutants lead to effects?  
4.6 Which forms of pollutants cause impairment? 
4.7 To what extent do factors other than specific pollutants (invasive species, flow 

diversions, land use changes, toxic algal blooms) contribute to beneficial use 
impairment? 

 
5. Compare monitoring information to relevant benchmarks, such as TMDL 

targets, tissue screening levels, water quality objectives, and sediment quality 
objectives     
5.1 What percentage of the Estuary is supporting beneficial uses? 
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5.2 Which segments should be considered impaired and why, and how do 
segments compare in terms of recovery targets? 

5.3 How can specific source limitations, controls, and mitigation be best linked to 
appropriate beneficial use endpoints and recovery targets? 

  
6.  Effectively communicate information from a range of sources to present a 

more complete picture of the sources, distribution, fate, and effects of 
pollutants and beneficial use attainment or impairment in the Estuary 
ecosystem. 
This objective applies to all of the questions listed under objectives 1 – 5.   
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Appendix IV 
 
In the appendix that follows, peer review comments from Dr. Don Stevens, Jr. on the 
external draft of this report are provided. Dr. Stevens’ comments suggested changes to 
the report to clarify analyses and improve upon the statistical techniques employed. 
Firstly, Dr. Stevens identified areas of the report that required further detail. For example, 
Dr. Stevens suggested that the description of calculating variance for the comparison of 
concentrations to regulatory thresholds could be improved upon, and explicit statements 
of null and alternative hypotheses should be provided. Response to these comments 
resulted in changes to the methods and results sections of the report. Secondly, Dr. 
Stevens commented on statistical approaches that could have been performed differently 
to those presented in this report. However, upon further discussion between co-authors 
and Dr. Stevens, SFEI decided to not pursue such analyses for this report, as Dr. Stevens 
indicated that the modified approaches would likely not change our overall 
interpretations. Future attempts by the RMP to perform power analyses and optimization 
of the Program should consider Don Stevens’ recommendations of more sophisticated 
statistical techniques. These can be summarized as:  
 

1. The use of power curves to evaluate designs in comparison of concentrations 
to regulatory thresholds. 

2. Encompass GRTS design in the evaluation of spatial trends and inter-annual 
variation. 

3. Improvements on regression techniques: specifically, in the presence of 
trends, the estimate of variance of the slope term must be modified. 

4. In sport fish trend analyses, multifactor ANOVA may be more appropriate 
that an iterative forward stepwise regression, as the residual mean square error 
may be inflated due to variance explained by other factors.  
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Comments on 
Power Analysis and Optimization of the 

RMP Status and Trends Program 
 

Don L. Stevens, Jr. 
Stevens Environmental Statistics, LLC 

December 28, 2007 
 
 

Introduction 
The Power Analysis and Optimization of the RMP Status and Trends Program Draft 
Report (Melwani, et al. (2007)) (hereinafter referred to as “PAO”) consists of a main 
body and three appendices.  The main body of the report discusses analyses to distinguish 
ambient conditions from relevant regulatory thresholds and to detect trend in ambient 
conditions.  Details of power analyses to evaluate long-term trend detection using the 
bivalve dataset are in Appendices I and II.  Appendix III provides an example format for 
presentation of the results and a summary of RMP management objectives. 
 
The stated objectives of the report were to address the questions: 

1. What power does the sample size of RMP stations provide to 
distinguish concentrations from relevant regulatory thresholds?   
2.  What is the power of the current sampling design to determine long-
term trends?   
3.  Are there regions in San Francisco Bay where sampling intensity can 
be reduced in order to reallocate funds to higher priority items? 

 
Power can be difficult to evaluate for a complex sampling design and its accompanying 
analysis.  Both the design for data collection and the data analysis must be tailored to the 
complexities of population to be described.  Overall, the PAO does a reasonable job of 
acknowledging of complexities of the RMP Status & Trends program and 
accommodating them in the power analysis. There are a number of instances where the 
analysis could be strengthened by using more appropriate techniques.  Nevertheless, I 
think overall conclusions of the report would not be substantially impacted if the repeated 
using more sophisticated analytical methods. 
 
One of the shortcomings of the PAO is a lack of clarity and precision in the discussion of 
how the objectives are addressed. To some extent, this may be due to the organization of 
the report. I found it difficult to determine exactly what analyses were carried out of 
which data sets. Also, it is not evident that the authors have a thorough understanding of 
statistical power and the appropriate methodology to assess power.  This may be due to a 
lack of clarity in the discussion of methods and, in particular, exactly what null and 
alternative hypotheses were being evaluated.  In order to give context to my comments, I 
begin with a background discussion of statistical power. 
 
Andy Jahn began Appendix II with a very nice, concise explanation of statistical power 
and the factors that affect power. His opening paragraph is repeated here for reference: 
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Statistical power is the complement of the type-two error rate, the 
probability of accepting the null hypothesis of no effect when, in fact, the 
effect exists.  Thus in designing a program to have 95% power to detect an 
effect of a given magnitude, we intend to effect a type-two error rate ≤ 
5%, or no greater than the customary type-1 error rate used in ecological 
work.  Power is positively affected by the type-1 error rate (here held 
constant), size of the effect sought, and the size of the sample, and 
negatively affected by error variance.  Ignoring the type-1 error rate, the 
factors under control of the investigator are the effect size, the sample size 
(usually equated with cost), and a sampling design that minimizes the 
proportion of the variance that ends up in the error term. 

 
The only things that are missing from his discussion is mention of two implicit factors:  
the statement of null and alternative hypotheses (the null is not always one of “no effect”) 
and the statistical test that is applied (some tests are more powerful than others).  Both 
factors need to be explicit before a sensible power analyses can be performed. 
 
Within the context of testing statistical hypotheses, null hypotheses (H0), alternative 
hypotheses (HA), and allied probability distributions are defined. Power is simply the 
probability of making the right decision, where the decision is based on outcome of an 
appropriate statistical test. More carefully, Power = Prob(Rejecting H0 given that the true 
value is a  point in HA).  In most real situations, the null and alternate hypotheses are not 
simple hypotheses consisting of a single value for a parameter, but are composite 
hypotheses.  For example, in the regulatory context that is the backdrop for the RMP, a 
meaningful null hypothesis might have the form 
  

H0:  µ, the mean concentration of a contaminant in the target waterbody, 
exceeds a defined standard C  

or 
H0:   µ≥ C 
 

and the alternative hypothesis the form  
 

HA: the mean concentration is less than the standard 
 
or 

 HA: µ < C. 
 

 
This is consistent with the formulation used in Lowe, et al., (2004): 
 

The tests addressed whether, within a survey period, the mean 
concentration of a chemical constituent in a sub-region was above the 
guideline for causing potential environmental harm. The null hypothesis of 
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the statistical test addressing this question is that the actual mean 
concentration (µ) is above the guideline value. 
 

It is also consistent with the approach used in evaluating Objective 1 (or Scenario 1), I 
think. 
 
When both null is a composite hypothesis, the size of the test is usually computed at the 
boundary of the hypothesis, e.g., for the null H0 : µ ≥ C , the size is evaluated at µ = C. In 
effect, the composite null is replaced with a simple null hypothesis.  When the alternative 
is a composite, the test doesn't have a single value of power.  Rather, the power depends 
on the particular point in the alternative that happens to be true.  The definition of power 
given above makes this point, as does Andy Jahn's discussion of effect size.  The effect 
size is just the difference between the value of the null hypothesis and the selected point 
in HA where power is evaluated.  For this reason, power analyses frequently are expressed 
in the form of power curves where the effect size is varied over the values in the 
alternative hypothesis while the other factors are held constant.  Power curves can be 
vary useful for informing decisions on sampling design and resource allocation, because 
alternative scenarios can be compared easily. 
 
Summarizing, a proper power analysis needs explicit statements of sampling design, null 
and alternative hypotheses, analytic procedure used to test the null hypothesis, 
specification of the Type I error size, and the effect size (or the point(s) in HA where 
power is to be evaluated.). The PAO would benefit greatly if these elements were clearly 
identified for all of the analyses carried out. 
 
Comments on Scenario 1 Power Analysis 
 
The analysis would benefit greatly from explicit statements of null and alternative 
hypotheses, and exactly where power is being evaluated.  From the discussion on one-
tailed versus two-tailed tests, I think the PAO uses H0 : µ ≥ C versus HA : µ < C.  The 
power is apparently evaluated at the observed mean value, which was also done in Lowe, 
et al., 2004.  That seemed odd to me when I initially reviewed Chapter 3 of Lowe, et al, 
(2004), and still seems like a very limiting approach to a power analysis.  Furthermore, in 
some cases, it leads to contortions like  
 

“Some contaminants are currently well above threshold values. To 
simulate power to detect future pollutant levels that are below thresholds 
in these scenarios, concentrations were adjusted to 20% below its 
threshold, and the one-tailed comparison was made with this simulated 
data. (PAO, p.7)  

 
Why not do an analysis that gives power curves as a function of departure from 
threshold?  This avoids the necessity of special handling of cases where the observed 
mean is close to the standard, provides much more information for design consideration, 
and really doesn’t take much more effort. Similarly, if sample size were one of the design 
parameters up for consideration, a power curve could be generated for a fixed effect size 
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and variable sample size.  More generally, one could generate a power surface as a 
function of sample and effect size.  The power surface could be presented as a two-way 
table.  One could also determine the combinations of effect size and sample size that 
would give a specified power. 
 
The PAO addressed Objective 1 assuming that H0 was assessed using a t-test and 
referenced SYSTAT software for power.  I’m not familiar with SYSTAT, but I presume 
that the power was calculated using a non-central t distribution.  It would be reassuring if 
that were explicitly stated. 
 
For a t-test applied to a particular population, the only population parameter that 
influences power is the variance.  Everything else is under the direct control of the 
investigator.  Thus, a good estimate of variance is essential to a realistic power analysis, 
so variance estimation should be the focus of the power analysis. This is the weakest 
point of the PAO:  variance estimation is either not well-described or done in a very off-
hand fashion.  
 
A brief description of the design of the data collection should be provided.  I’m familiar 
with the RMP design for water and sediment, but not for sport fish or bivalves. There is 
no mention made of how the sport fish data was collected (there is a citation that may 
have design information, but at least a summary should be included here). Design 
discussion is critical, because the statistical test used should be consistent with the 
manner in which data were collected.  
 
The GRTS design used to collect sediment and water is not a simple random sample 
(SRS), and analysis of data collected with a GRTS design using a t-test is not strictly 
appropriate.  However, a GRTS design will yield a lower standard error of the mean than 
an SRS design in the presence of spatial correlation of the response, so a t-test is likely 
conservative.  It follows that the power analysis based on t-test should be conservative, 
that is, power using a test that is consistent with a GRTS design will be higher than the 
power using a t-test.   
 
 
Comments on Scenario 1 Power Analysis 
 
Most of the power analyses for trend were carried out using a simulation model. (A 
different approach was taken in Appendix II). The choice to evaluate power using a 
simulation model is very reasonable.   However, when the choice is made to evaluate 
power via simulation, it is critical that the model chosen reflect all of the complexities of 
the actual population and design and that the parameters of the model are appropriately 
estimated.  Ecological variation frequently has a very meaningful structure. If the design 
for gathering the data to be analyzed for trend detection accommodates the variation 
present in the population and measurement processes, some of that variation may have 
virtually no effect on the ability to detect trend. The ability to detect trends in a regional 
population sampled in annual (or longer) time steps can be influenced by four major 
components of variance: (1) population variance, (2) interannual variance, (3) site–year 
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interaction, and (4) response variance.  Larsen, et al., (1995) provides an extensive 
discussion of these components in an ecological context.   
 
From the PAO,  

The model used in the simulation study was  
 
 yi = Yo – R(t) + ε1 + ε2     (Equation 1) 

Where, yi = an individual simulated contaminant concentration sample, Yo 
= the initial average concentration, R = annual rate of decline, t = time (in 
years), and ε1 and ε2 are normally distributed error terms that represent the 
intra- and inter-annual variation, respectively. 

 
Larsen’s interannual variance is equivalent to the ε2 component of PAO Eq 1.  The ε1 
component then encompasses every other source of variation.   
 
The model used in the PAO may not be complex enough to form the basis for a realistic 
power analysis.  A dominant feature of most ecological populations is that responses 
exhibit spatial pattern.  A GRTS design exploits that spatial pattern by ensuring spatial 
balance of the sample locations, so that the resulting estimates are more precise that those 
resulting from simple random sampling.  Since spatial correlation was not mentioned, I 
assume that the simulated error terms were generated independently, which probably 
does not reflect the true nature of intra-annual variation.  Furthermore, the responses may 
also be temporally correlated, so that the inter-annual error term is correlated.  The 
presence of correlation will tend to decrease the effective sample size, and hence decrease 
power.  This may be balanced by the increased precision that a GRTS design provides.  
Furthermore, the several components of variation impact the ability to detect trend in 
different ways.  If the components are present but not included in the model, a misleading 
estimate of precision can result. 
 
According to the PAO (P12, L1), trend detection for simulated values was performed by 
linear regression.  If statistical significance was carried out by the usual t-test from a 
standard regression package, then the significance level is almost certainly wrong.  The 
slope estimate produced by ordinary least squares is appropriate, but in the presence of 
interannual variation, the standard error of the estimate must be modified.  See, for 
example, the discussion in Larsen et al., (1995), Larsen et al., (2004), Urquhart, et al., 
(1998), or VanLeeuwen, et al.(1996) .  For example, Larsen, et al. (2004) give an 
expression for the variance of the slope estimate that explicitly identifies the role of the 
role of the several components of variance.  
 
Sport fish 
 
I'm not sure that I follow the discussion of the analysis of the sport fish data.  It sounds as 
if determination of the various components of variance were determined by applying a 
sequence of one-way ANOVAs, with each successive ANOVA applied to the residuals of 
the previous.  If a factor did not show significance, then it was dropped in subsequent 
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analyses. The correct approach would be to do a multi-factor ANOVA.  The problem in 
doing multiple single factor ANOVAs is that factor significance is understated so that 
important factors may be dropped.  For example, below are three ANOVAs of some 
artificial data.  The first is a one-way, & shows no significant treatment effect.  The 
second is also a one-way, and shows a highly significant effect of Factor B.  The third 
includes both factors, and shows significant effects for both factors.  The lack of 
significance in the first ANOVA occurs because the residual mean square is inflated by 
the effects of Factor B. The one-way ANOVA for Factor B indicates a significant effect 
of B, but the residual mean square is still inflated by the effects of Factor A in 
comparison the two-way ANOVA. The residual mean square is going to have the most 
influence on the power to detect trend, and smaller is definitely better.   
 
One-way Analysis of Variance Table (Factor A) 
            Df   Sum Sq  Mean Sq  F value  Pr(>F) 
A           4   38.012    9.503    1.7079  0.1798 
Residuals  25  139.105    5.564    
 
One-way Analysis of Variance Table (Factor B) 
            Df   Sum Sq  Mean Sq  F value     Pr(>F)     
B          2   76.217   38.109   10.198  0.0005023 *** 
Residuals  27  100.900    3.737                                   
 
Two-way Analysis of Variance Table (Factors A and B) 
            Df  Sum Sq  Mean Sq  F value     Pr(>F)     
A           4  38.012    9.503    3.4756  0.0232104 *   
B           2  76.217   38.109  13.9375  0.0001084 *** 
Residuals  23  62.887    2.734                       
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1   
 
Another approach would be to estimate components of variance and trends 
simultaneously, say by using the approach given in VanLeeuwen, et al.(1996).  They 
consider a mixed model with a trend, and show how to separate random effects of 
components such as site and year from fixed effects such as trend.   
 
Appendices I & II 
 
The methodology seems basically correct, but I’m concerned that relevant components of 
variance were not properly incorporated.  Of particular concern is the inter-annual 
variation.  For short time series, inter-annual variation can very easily be confused with 
trend. If inter-annual variation is not included in the model, a spurious estimate of trend 
and precision can result.  For example, the ANOVA given in Table 1, Appendix II, 
estimates trend from a data set with six sites and three years of data.  The ANOVA 
accounts for site variation but not inter-annual variation. The effect attributed to trend 
may very well be due to inter-annual variation, so the resulting power estimates could be 
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misleading. Also, if there is inter-annual variation, the estimate of the standard of the 
slope estimate must be modified, as commented on above. 
 
Unfortunately, distinguishing random temporal variation from change due to real trend 
with only a short time series available is beset with difficulty. The split of the temporal 
variation into a stochastic component and a deterministic component is essentially 
arbitrary.  Even though an estimate of the temporal slope may appear to be significantly 
non-zero, an alternative model that attributes the temporal variation to random 
interannual variation may provide an equally reasonable explanation.  The difficulty is 
greatly reduced with longer time series:  extraction of a trend component is much more 
feasible with 10 to 20 years of record.  An analysis of trend detection power based on less 
than ten years of data should be interpreted with caution. 
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