The Challenges in Designing an Effective Regional Watershed Sampling Program

Lester McKee Ph.D.

Watershed Science Program Manager

San Francisco Estuary Institute RMP Annual Meeting March 2001

A Quick Overview

- 1) Outline management questions.
- 2) Outline an ideal study design.
- 3) Challenges.
- 4) Demonstrate NHD and its relevance to RMP.
- 5) Describe some priorities for the future.

Multiple Management Questions

- A. Source analysis
- B. Pathways and processes
- c. Bay TMDLs
- D. Watershed TMDLs
- E. Restoration / BMP design
- F. Trend analysis

Ideal Study Design

- Watershed classification.
- Conceptual models (mass balance and processes).
- Develop evaluation strategies.
- Establish a regional network of observation watersheds.
- Extrapolate to other watersheds.

<u>Challenges</u>

- 1) Regional coordination of effort.
- 2) Testing technical data-gathering approaches.
- 3) Designing the right spatial sampling approach.
- 4) Using sampling technologies that give comparable and consistent results.
- 5) Quality assurance of results.
- 6) Data and information management.
- 7) Regional synthesis of data and results.
- 8) Communication.

High-resolution National Hydrography Data Set (NHD) for the Bay Area

SFEI, USGS (funding partners: USACE, RWQCB, CALFED, SCVWD).

So what is it?

- USGS digital line graph (DLG) at 1:24k scale and the USEPA Reach File (RF3).
- A single contiguous user-friendly file.

High-resolution National Hydrography Data Set (NHD)\for the Bay Area

What are the benefits?

- 1) Improved understanding of hydrological routing.
- 2) Stream and watershed linkages between watershed management and BUs.
- 3) Information sharing by common codes and names.
- 4) Common base map for storing many layers of information (A relational spatial index to that information).

Bay Area NHD

Storm Drain Mapping

Oakland Museum, William Lettis & Associates, and SFEI.

- Public education / schools and private sector.
- However also of regionally consistent quality suitable for improving the understanding of sources, pathways and loadings and managing pollutants of concern.

Sample Station Summary (STN0173)

Stream Name: Novato Creek

County: Marin Watershed: Novato Creek Watershed

Location: from Hicks Valley Road bridge at Miwok Park, upstream

30 m

Name: California roach (Lavinia symmetricus)

No of Fishes: 7

Collection Date: JUL-03-1997

Notes: No notes available

This is a native fish.

No photograph on record

Name: Rainbow trout (Oncorhynchus mykiss)

No of Fishes: 12

Collection Date: JUL-03-1997

Notes: No notes available

This is a native fish.

Name: Sacramento sucker (Catostomus occidentalis)

No of Fishes: 6

Collection Date: JUL-03-1997

Notes: No notes available

This is a native fish.

No photograph on record

Future Uses of the NHD Product

Improved estimates of storm water loads to the bay.

Deciding Where to Sample

Sample in areas where we know:

- > A substance of concern.
- Where there are clear possibilities for improved management or restoration.
- We can test for management effectiveness and learn most from the results (<u>failure or trends</u>).
- Should prioritize the largest sources / pathways / loads or beneficial use impairments first.

Placing Local Stormwater Loads in Context.

- About 90% of the discharge entering the Bay come from the Delta.
- About 85% of the discharge from the delta enters the Bay during the winter months.

Sediment Loads From the Delta During Large Resuspension Events

<u>Author</u>	Average (M t/y)
Smith (1963)	3.7
Schultz (1965)	4.9
USACE (1967)	4.5
Krone (1979)	3.35
Porterfield (1980)	3.8
Ogden Beeman (1992)	3.5
McKee 2001 in prep.	2.4±0.6
	$(1.3\pm0.3 - 3.0\pm0.7)$

Methodologies to Sample Trends Over Time

Priorities for the Future

- 1) Finish and distribute a regionally consistent base map (NHD) for research, data management, and communication purposes.
- 2) Improve regional coordination and prioritization of watershed data collection (substances and locations).
- 3) Strengthen the process for data management and interpretation on a regional basis.

Some Things to Contemplate

Let us put our minds together and see what life we can make for our children.

Sitting Bull – Lakota Sioux

Continue to contaminate your own bed and one night you will suffocate in your own waste.

Chief Seattle (Sealth) - Suquamish