Optimizing sampling methods for monitoring pollutant trends in San Francisco Bay urban stormwater

Aroon R. Melwani, Don Yee, Alicia Gilbreath, Jay Davis, and Lester McKee
Applied Marine Sciences, Inc., Livermore, CA / amelwani@amarine.com

Introduction

The Small Tributaries Loading Strategy (STLS) focuses on urban stormwater loadings from small tributaries. To date, STLS monitoring has been geared towards determining concentrations and annual loads of PCBs and Hg; the sampling approach has yet to be fully optimized for detecting trends over time. Here, we evaluate the variability and statistical power for detecting future trends in PCBs based on baseline STLS data in the Guadalupe River watershed. The objective was to improve our understanding of the influence of climatic and seasonal factors on baseline stormwater pollutant conditions, and inform refinements to the STLS monitoring design for detecting trends.

Guadalupe River Watershed

Figure 1. PCBs as a function of discharge (flow) and turbidity

Figure 2. Raw vs. Modeled PCB Loads. Model values are the function of log (turbidity) and log (flow)

Statistical Modeling and Power Analysis

- Turbidity and flow together explain over 80% of the variation in PCB loads at Guadalupe River
- Residual variance of modeled PCBs may be robust alternative to raw data for trend detection
- Preliminary results suggest > 80% power to detect trends in PCB loads at sample sizes of n = 4 every 3 years
- Further data modeling is underway to incorporate indicators of hysteresis and sediment dilution

Acknowledgements

The authors are grateful to Sources, Pathways, and Loadings Workgroup at the Regional Monitoring Program for Water Quality in San Francisco Bay for funding this study.