

Sediment and Contaminant Loading from the Guadalupe River

Implications for TMDLs and Mass Budget Models

Jon E. Leatherbarrow Lester J. McKee SFEI

Presented at NorCal SETAC 13th Annual Meeting May 6-7, 2003 Berkeley, CA

TMDLs in San Francisco Bay

1994 – OEHHA; fish consumption advisory for bioaccumulative contaminants

1998 – 303 (d) list of impaired water bodies for PCBs, Hg, OC pesticides (DDT, chlordane, and dieldrin)

Current Top Priority - PCB and Hg TMDL development

Mass Budget Models – RMP PCBs (Davis, 2002)

Conceptual Model of Loading

(Davis et al., 1999)

Why Guadalupe River?

556 km² watershed.

Urban and industrial areas of San Jose

Historic use of OC pesticides

New Almaden Mercury Mine

RMP – Estuary Interface Pilot Study 1997-2001 Leatherbarrow et al., 2002; www.sfei.org

San Francisco Estuary Institute

OF SANTA CLARA COUNTY HEALTH DEPARTMENT

Relative Proportions of Estimated Hg Loads (RWQCB, April 2003)

Guadalupe River Study

Developed by the RMP Sources Pathways and Loadings Workgroup (SPLWG)

Funded by the Clean Estuary Partnership (CEP)

Technical oversight by SPLWG & CEP

Sampling began November, 2002

Report by December, 2003

Study Objectives

Estimate loading of sediment and associated contaminants

Improve understanding of transport processes and contaminant loading from local tributaries

Assist in development of TMDLs and mass budget models

Parameters and Participants

Sample Collection – SFEI

Real-time Turbidity — OBS @ 15-min
Rand Eads (Redwood Sciences Lab., USDA Forest Serv.)

Real-time Streamflow and SSC *Larry Freeman (USGS)*

PCBs, Hg (&TM), and OC pesticides

AXYS Analytical Ltd – organics

Mark Stephensen (MLML) – Hg, TM, & cognates

Estimating Loads

Regression analysis of turbidity and contaminant concentrations

ContaminantConcentration

Turbidity (NTU)

Sample Collection – Nov, 2002

Sample Collection – Dec, 2002

Turbidity vs. SSC - Preliminary

Preliminary Concentrations

		Max in Alv. Slough,	
	This Study	1997-2001	
Hg (μg/L)	0.2 - 18	0.7	
PCBs (ng/L)*	7.7 - 27	7.2	
Σ DDT (ng/L)*	5.7 - 42	9.2	
Σ Chlord (ng/L)*	3.5 - 33	3.0	
Dieldrin (ng/L)*	0.6 - 3.1	0.5	

^{*} only 4 samples analyzed to date from Guadalupe River Collection and analysis methods differed between studies

Implications for Annual Loading

Flow weighted mean concentrations of:

Hg	PCBs
$1 \mu g L^{-1} = 60 kg$	$10 \text{ ng L}^{-1} = 0.6 \text{ kg}$
$5 \mu g L^{-1} = 300 kg$	$15 \text{ ng L}^{-1} = 0.9 \text{ kg}$
$10 \mu g L^{-1} = 600 kg$	$20 \text{ ng L}^{-1} = 1.2 \text{ kg}$

Central Valley Hg Load ≈ 400 kg yr⁻¹

PCB loading from small tribs > 10 kg?

Future Steps

Report – December, 2003

Continued monitoring (pending funding)

Expand study to other watersheds

Explore characterization techniques to extrapolate information to other watersheds

