

Grassland Bypass Project

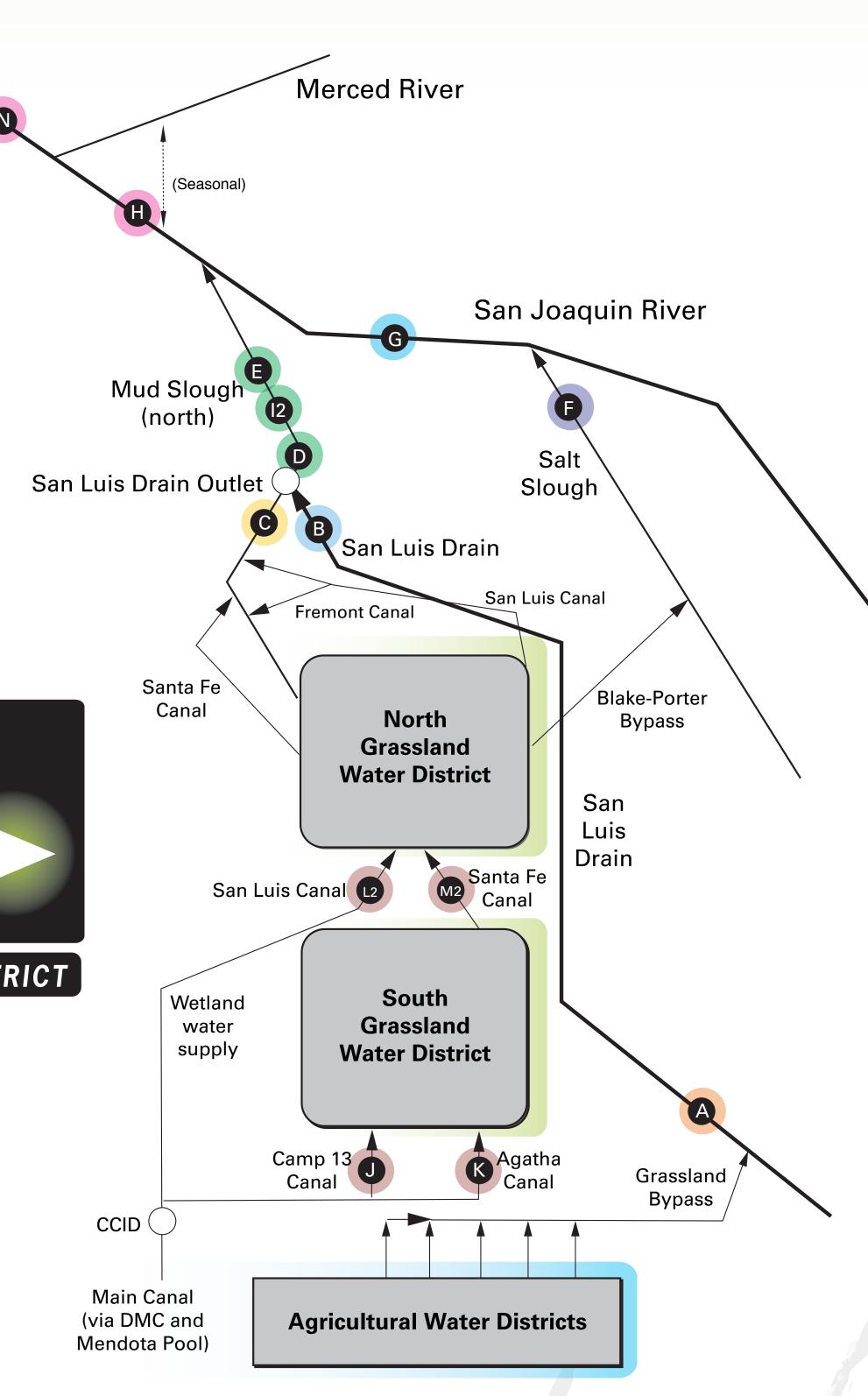
INTRODUCTION

The Grasslands Basin of Central California includes more than 97,000 acres of highly productive farmland that has historically drained through 160,000

acres of wetland habitat. Soils are primarily derived from rocks that form the Diablo Range and are elevated in salt and trace element concentrations. Irrigation of farms released selenium and other

constituents harmful to aquatic wildlife into local waterways, resulting in severe impacts on water quality for state and federal wildlife refuges and private wetlands (Ohlendorf et al. 1990). Starting in 1997, the Grassland Bypass Project (GBP) has separated agricultural drainage water from the wetland water supply channels. The Project is run by local farmers in coordination with state and federal agencies and Environmental Defense. The Project is subject to a Waste Discharge Requirement that strictly limits the load of selenium that can be discharged to Mud Slough. The farmers have significantly reduced the loads of salt, selenium, and boron through source control, water conservation, and improved irrigation efficiency, recycling of irrigation water and reuse of tail water on salt tolerant crops, tiered water pricing, etc. The Grassland Bypass Project monitors contaminant concentrations throughout the drainage area and studies effects on fish, invertebrate, and plant tissue, as well as bird eggs.

The PROJECT AREA


SCHEMATIC MAP OF THE GRASSLAND WATER DISTRICT

The monitoring plan for the GBP includes measurement of water quality, flow, sediment quality/quantity, biota, and chronic toxicity data at various sites throughout the Grasslands Basin to assess the environmental effects of the Project. Sampling sites are located at the inlet (Site A) and the outlet (Site B) of the San Luis Drain, in water supply channels leading to (Sites J, K, L2, and M2) and from (Site C) the wetland areas. Three sites (Site D, E, and I2) are used to monitor effects on Mud Slough, and two sites evaluate effects of the Project in the San Joaquin River (Sites H and N). Reference sites are located along Salt Slough (Site F) and the upper part of the San Joaquin River (Site G).

Station B is the primary sampling location for measuring flow, salt, selenium, and boron loads. Data are collected daily to evaluate whether the discharge requirements near the terminus of the San Luis Drain are met.

CONTROL OF AGRICULTURAL DRAINAGE WATER AND RESTORATION OF WETLAND WATER SUPPLY CHANNELS

Nicole David¹, Michael C.S. Eacock², Joseph C. McGahan³, William N. Beckon⁴

SANDARING PROGRAM

BIOLOGICAL MONITORING

At seven different sites selenium concentrations in small and medium fish, invertebrates, vegetation, and bird eggs were measured to study the ecological effects of the Grassland Bypass Project. In general, selenium concentrations in Mud Slough (at Site D) and downstream before the confluent with the San Joaquin River (Site E) exceeded the threshold of toxicity frequently and the overall hazard of selenium to the ecosystem continued to be high according to Lemly's index (Lemly 1995, 1996). This aquatic risk assessment was designed to provide an estimate of ecosystem effects of selenium and is based on maximum contaminant concentrations, rather than means, which makes it a highly sensitive tool.

In Salt Slough, a wetland water supply channel, where agricultural drainage water has been removed by the GBP, selenium concentrations declined predominantly during the first year of the Project and stayed well below the concern threshold levels since.

References

Lemly, A.D. 1995. A Protocol for Aquatic Hazard Assessment of Selenium. Ecotoxicology and Environmental Safety, Vol. 32, No. 280B288 Lemly, A.D. 1996. Assessing the Toxic Threat of Selenium to Fish and Aquatic Birds. Environmental Monitoring and Assessment, Vol. 43, No. 19B35 Ohlendorf, H.M., R.M. Hothem, C.M. Bunck, and K.C. Marois. 1990. Bioaccumulation of Selenium in Birds at Kesterson Reservoir, California. Archives of Environmental Contamination and Toxicology, Vol. 19, No 4, pp. 495-507. US Bureau of Reclamation et al. 2004. Grassland Bypass Project, Annual Report. 2001-2002. Prepared by the San Francisco Estuary Institute, Oakland, CA.

[1 San Francisco Estuary Institute, Oakland, CA 2 US Bureau of Reclamation, Fresno, CA 3 Summers Engineering, Inc., Hanford, CA 4 US Fish and Wildlife Services, Sacramento, CA]

RESULTS

Within the first seven years of the Project, the drainage volume from the Grassland Drainage Area has been reduced by 46%, the salt load was reduced by 41%, and the selenium and boron load showed a decline of 61% and 34%, respectively (Table I) (US Bureau of Reclamation et al. 2004).

Water Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	% Reduction to 1996
Drainage Discharge (acre feet) ^a	51,079	37,478	46,244	32,253	30,208	28,008	28,411	27,425	28,300	45
Selenium Load (Ibs) ^b	9,560	6,856	8,882	4,990	4,506	4,300	4,167	3,983	3,675	62
Boron Load (1000 Ibs) ^b	730	729	941	642	606	545	273	281	380	48
Salt Load (tons) ^b	191,141	169,234	208,900	146,543	128,568	119,246	117,552	118,747	118,040	38

Data Source: a – U.S. Geological Survey, b – Loads calculated from California Regional Water Quality Control Board.

	WY 1996		WY 1997		WY 1998		WY 1999		WY 2000		WY 2001		CY 2002		CY 2003	
	Se	Lemly	Se	Lemly												
Mud Slough																
Water	19.0	High	80.0	High	104.0	High	5.1	High	66.0	High	51.0	High	55.0	High	48.0	High
Sediment	0.4	None	0.8	None	2.0	Low	4.8	High	4.4	High	3.5	Moderate	8.5	High	7.8	High
Invertebrates	1.6	None	3.3	Low	11.0	High	7.0	High	15.3	High	7.1	High	7.5	High	pending	
Fish Eggs	14.2	Moderate	56.1	High	34.2	High	39.6	High	46.5	High	54.8	High	51.5	High	pending	
Bird Eggs	3.1	Minimal	4.4	Minimal	6.6	Low	10.0	Low	5.1	Low	7.0	Low	3.2	Minimal	pending	
			221													
Salt Slough	Se	Lemly	Se	Lemly												
Water	38.0	High	3.0	Moderate	5.0	High	1.5	Minimal	1.7	Minimal	2.1	Low	1.1	Minimal	1.3	None
Sediment	0.8	None	0.9	None	2.1	Low	0.9	None	0.7	None	0.8	None	0.7	None	0.8	None
Invertebrates	4.7	Moderate	2.6	Minimal	3.2	Low	2.8	Minimal	2.7	Minimal	0.7	Minimal	2.4	Minimal	pending	
Fish Eggs	28.1	High	17.8	Moderate	12.9	Moderate	11.2	Moderate	14.5	Moderate	12.5	Moderate	13.8	Moderate	pending	
Bird Eggs	5.2	Low	3.6	Minimal	3.7	Minimal	2.7	None	4.9	Minimal	4.0	Minimal	2.7	None	pending	

	WY 1996		WY 1997		WY 1998		WY 1999		WY 2000		WY 2001		CY 2002		CY 2003	
	Se	Lemly	Se	Lemly												
Mud Slough										1000						
Water	19.0	High	80.0	High	104.0	High	5.1	High	66.0	High	51.0	High	55.0	High	48.0	High
Sediment	0.4	None	0.8	None	2.0	Low	4.8	High	4.4	High	3.5	Moderate	8.5	High	7.8	High
Invertebrates	1.6	None	3.3	Low	11.0	High	7.0	High	15.3	High	7.1	High	7.5	High	pending	
Fish Eggs	14.2	Moderate	56.1	High	34.2	High	39.6	High	46.5	High	54.8	High	51.5	High	pending	
Bird Eggs	3.1	Minimal	4.4	Minimal	6.6	Low	10.0	Low	5.1	Low	7.0	Low	3.2	Minimal	pending	
	RA		221						6							
Salt Slough	Se	Lemly	Se	Lemly												
Water	38.0	High	3.0	Moderate	5.0	High	1.5	Minimal	1.7	Minimal	2.1	Low	1.1	Minimal	1.3	None
Sediment	0.8	None	0.9	None	2.1	Low	0.9	None	0.7	None	0.8	None	0.7	None	0.8	None
Invertebrates	4.7	Moderate	2.6	Minimal	3.2	Low	2.8	Minimal	2.7	Minimal	0.7	Minimal	2.4	Minimal	pending	
Fish Eggs	28.1	High	17.8	Moderate	12.9	Moderate	11.2	Moderate	14.5	Moderate	12.5	Moderate	13.8	Moderate	pending	
Bird Eggs	5.2	Low	3.6	Minimal	3.7	Minimal	2.7	None	4.9	Minimal	4.0	Minimal	2.7	None	pending	

Table 2 Aquatic Hazard Assessment of Selenium in Mud Slough and Slat Slough. WY: Water Year, CY: Calendar Year, Se: maximum selenium concentration (µg/L), Lemly: Lemly Aquatic Index.

For More Information

www.sfei.org/grassland/reports/gbppdfs.htm or contact Nicole David at nicoled@sfei.org

San Francisco Estuary Insti 7770 Pardee Road 0 akland, CA 94621 (510)746–7334 http://www.sfei.org

