Contaminant Loads from Stormwater to Coastal Waters in the San Francisco Bay region:

Comparison to other pathways and recommended approach for future evaluation

J.A. Davis, L.J. McKee, J.E. Leatherbarrow, and T.H. Daum

San Francisco Estuary Institute
09 / 2000

ACKNOWLEDGMENTS

Design and review

- SCCWRP
- MLML
- SPLWG of the RMP

Don Yee SFEI

Rainer Hoenicke SFEI

Bruce Thompson SFEI

Pam Tsai SFEI

Tom Mumley SWRCB

Fred Hetzel SWRCB

Jim Kuwabara USGS

Trish Mulvey Clean South Bay

Andy Gunther Applied Marine Sciences

Jim McGrath Port of Oakland

Terry Cooke URS Corp

Peter Mangarella URS Corp

Geoff Brosseau BASMAA

Dan Cloak SCVURPPP

Graphics and GIS

C. Grosso (SFEI)

Z. Der (SFEI)

Pair review

Tom Dunne

(U.C. Santa Barbara)

The Model

A simple rainfall / runoff model

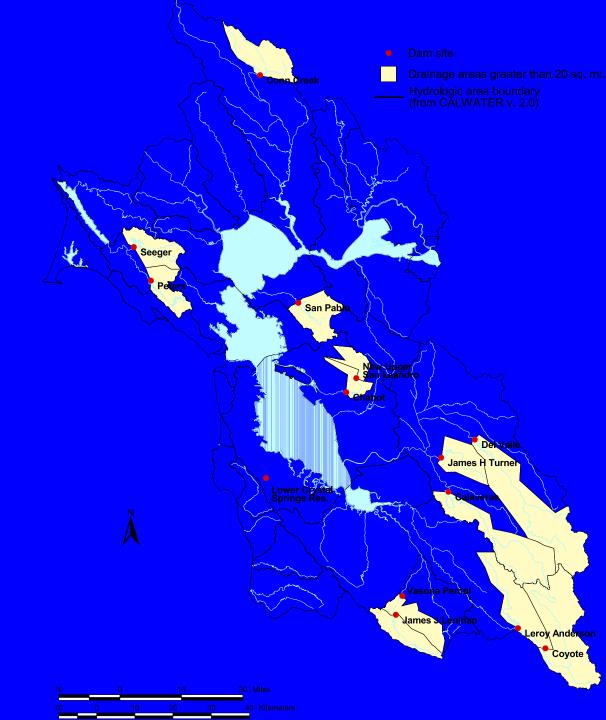
$$W = \sum_{j=1}^{n} (C_{j} * r_{j} * i * A_{j})$$

Where

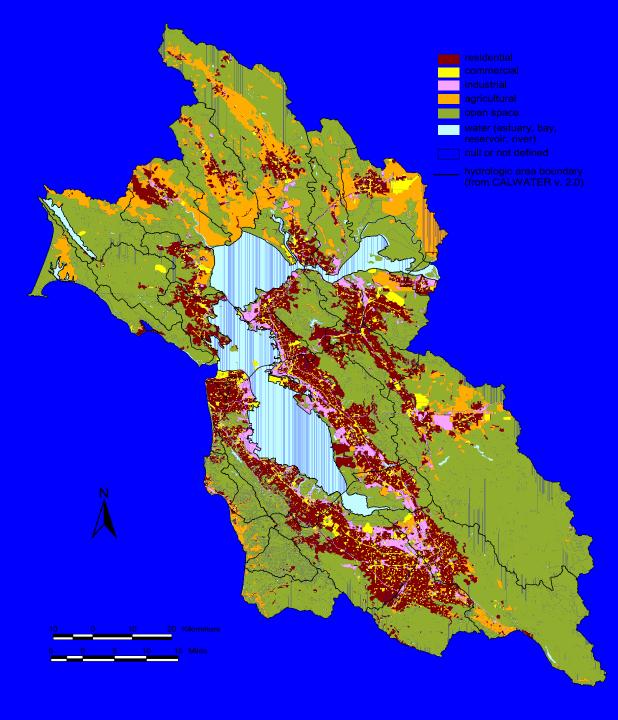
W = Contaminant load from a hydrologic unit

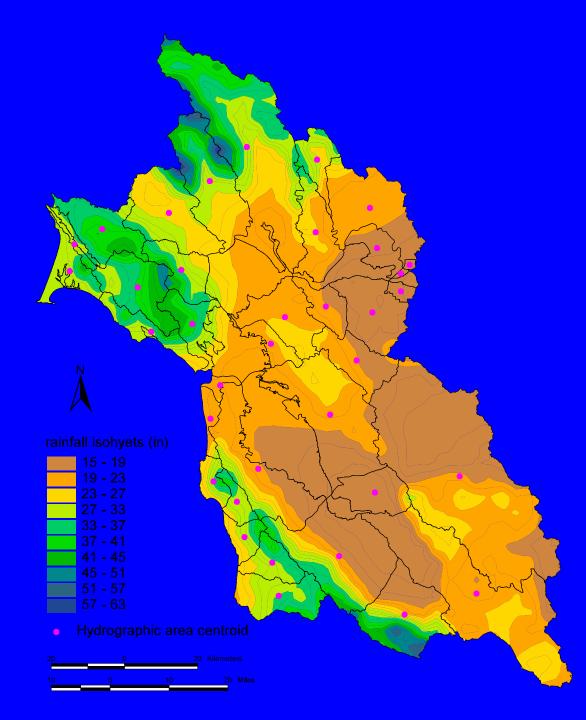
C = Stormwater contaminant concentration for land use j

r = Runoff coefficient for land use j


i = Average rainfall for the hydrologic unit

A =Area of land use j in the hydrologic unit


Hydrologic Areas CALWater Map


Drainage **Areas That** Were Disregarded In The **Modeling Process**

Land Use
Input Into
The Model
(ABAG)

Rainfall Input Into The Model (PRISM)

Bay Area Characteristics

Drainage area – 8,552 sq km

- Residential 21%
- Commercial 5%
- Industrial 4%
- Agricultural 13%
- Open Space 56%

Runoff Coefficients

	Low	Best	High
Residential	0.20	0.35	0.50
Commercial	0.60	0.90	0.95
Industrial	0.60	0.90	0.95
Agricultural	0.05	0.10	0.20
Open Space	0.10	0.25	0.50

Limitations And Problems With the Model

- Calibrated well for impervious areas
- The model in inherently linear
- Data are not available for may of the substances of concern
- Rainfall does not characterize the variability in contaminant loads accurately
- The modeling areas are not defined as discrete watersheds

Estimated Mass Loads From Storm Water Runoff (t/y)

	Lower bound	Upper bound	Best estimate
Suspended solids	170,000	670,000	310,000
BOD	8,600	25,000	16,000
Nitrate	810	3,200	1,500
Phosphate	280	850	510

Estimated mass loads from storm water runoff (t/y) (continued)

	Lower bound	Upper bound	Best estimate
Cadmium	1.3	3.7	2.3
Chromium	22	64	40
Copper	36	110	66
Lead	44	150	81
Nickel	27	78	49
Zinc	150	470	280

Contaminants Not Quantified

- COD
- Nitrite
- Ammonia
- Mercury
- Selenium
- Total PCBs
- Total PAH
- Total DDT
- Total Chlordane

- Dieldrin
- Chlorpyriphos
- Diazinon
- Dioxins
- Total coliform
- Fecal coliform
- Enterococcus
- MTBE

Methodologies For Other Pathways

- Effluent discharges were quantified by combining 1998 concentrations and flow on a monthly time step and summing to annual loads
- Atmospheric deposition was quantified using data from the SFEI Air Deposition Pilot Study
- **Dredged material disposal** was qualified by combining data from the ocean disposal data set for concentrations and volumes and using a density of 1.087 g/cm³
- Central valley loads were quantified by combining Delta Outflow with RMP concentration data

Comparisons Of The Pathways

	Total	Runoff	Effluent	Atmosphere	Dredge
	load (t)	%	%	%	%
SS	320,000	98	2.4	-	-
Nitrate	4,500	33	67	-	-
PO4	1,500	34	66	-	-
Cd	2.4	95	3.4	1.5	0.0
Cr	57	70	2.3	1.6	26
Cu	74	89	8.0	1.5	1.6
Ni	64	76	7.5	0.9	15
Zn	320	87	11	_	2.5

Comparisons of Local Pathways With Central Valley Loads

	Local Bay (t)	Central Valley (t)	Relative Magnitude
SS	320,000	3,500,000	11x
Nitrate	4,500	43,000	10x
PO4	1,500	6,400	4x
Cd	2.4	1.6	0.7x
Cr	57	550	10x
Cu	74	270	4x
Ni	64	410	6x
Zn	320	428	1.3x

Recommendations

- a. Watershed characterization using factors that relate to storm water transport of priority contaminants
- **b.** Conceptual model development (sources, transport, transformations, pathways, loadings, and losses)
- c. Development of evaluations strategies for classes of contaminants with similar properties
- d. Establish a regional network of observation watersheds
- e. Extrapolate to other watersheds

Achievements Since This Report

- A new estimate of sediment loads from the Delta is in draft form
- The PCB Budget Report is in review
- The Hg Air Deposition Report is in review
- The Storm Drainage Areas study is ongoing
- NHD is Ongoing
- Conceptual design has started for better determination of loads from local watersheds following the RMAS / SWAMP program

Potential Further Development And Uses For This Model And Data Set

SFEI could run the model again

- For pollutants where concentrations are more poorly quantified
- For discrete watersheds and / or for areas defined by the needs of local managers / governments / scientists and engineers
- For future management scenarios