
Appendix 2: An empirical investigation of spatiotemporal patterns 
in dissolved inorganic macronutrients in the Sacramento–San 
Joaquin River Delta	
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An	empirical	investigation	of	spatiotemporal	patterns	in	dissolved	
inorganic	macronutrients	in	the	Sacramento–San	Joaquin	River	Delta	
Abstract	
Here	we	present	an	empirical	analysis	of	trends,	both	seasonal	and	inter-annual,	in	water	quality	
parameters	in	the	Sacramento–San	Joaquin	River	Delta,	California.	Water	quality	parameters,	including	
dissolved	inorganic	macronutrient	(e.g.,	nitrate,	ammonium,	phosphate,	silicate)	concentrations,	and	
ancillary	physical/biogeochemical	quantities	(temperature,	conductivity,	dissolved	oxygen,	and	
chlorophyll-a	concentrations)	have	been	recorded	for	almost	four	decades	at	eleven	stations.	While	it	is	
well	known	that	these	water	quality	parameters	have	a	large	annual	cycle	and	have	undergone	various	
longer-term	changes	in	the	past	forty	years,	the	magnitudes	of	these	changes	are	more	poorly	
quantified.	We	implement	a	type	of	factor	analysis/dimension	reduction	known	as	non-negative	matrix	
factorization	in	order	to	tease	apart	various	contributions	to	water	quality	variability.	Non-negative	
matrix	factorization	proved	particularly	useful	in	the	physical	interpretation	of	various	drivers	and	
proved	capable	of	elucidating	important	trends	that	aren’t	otherwise	readily	identifiable.	

Introduction	
The	Delta	has	been	divided	into	subregions	for	different	purposes	by	different	programs.	Many	of	these	
subregions	are	similar	or	overlap	suggesting	that	a	small	number	of	subregions	are	sufficient	to	
characterize	variability	in	the	Delta.	It	is	expected	that	the	dominant	factors	affecting	nutrient	
concentrations	are	similar	within	each	subregion	and	are	distinct	from	those	in	other	subregions.		

Here	we	characterize	the	different	trends	in	both	space	and	time	across	the	Delta	and	illustrate	how	
these	trends	exhibit	themselves	within	different	regions.	Task	1	describes	the	rationale	for	subdividing	
the	Delta	as	we	show	here.	Using	those	subregions,	we	demonstrate	the	heterogeneity	of	this	unique	
ecosystem.	We	take	several	approaches	to	examine	this	heterogeneity,	from	calculating	monthly	means	
of	different	time-series	

Within	a	complex	dataset	consisting	of	time-series	at	many	stations	across	many	variables,	there	are	
often	“latent”	or	hidden	drivers	that	account	for	significant	amounts	of	variability	in	the	dataset	but	
cannot	be	easily	spotted	via	visual	inspection	of	the	many	time-series.	Water	quality	variability	can	be	
thought	of	as	the	sum	or	superimposition	of	various	processes.	Whereas	principal	component	analysis	
(PCA)	allows	for	the	sum	and	subtraction	of	processes	which	can	lead	to	non-physical	interpretation,	
non-negative	matrix	factorization	(NMF)	constrains	the	factors	to	be	positive	contributions	only.	For	
example,	an	eigenvector	(i.e.,	a	“mode”)	in	PCA	can	have	both	negative	and	positive	values,	suggesting	
that	a	given	mode	can	contribute	negatively	to	a	given	site	but	positively	to	another;	contrarily,	NMF	
allows	for	additive	processes	only.	For	instance,	non-negative	matrix	factorization	can	extract	seasonal	
and	interannual	processes	and	superimpose	them	according	to	the	strengths	of	their	modes	across	
stations	and	parameters.	Importantly,	the	constraint	of	non-negativity	does	not	imply	that	removal	
processes	(e.g.,	nutrient	removal	via	assimilation	or	transformation)	cannot	occur.		

Methods	
The	purpose	of	this	portion	of	the	analysis	is	to	determine	the	“status	and	trends”	of	the	Sacramento–
San	Joaquin	River	Delta	(hereafter	the	Delta).	Stations	have	been	maintained	at	the	following	locations	
from	1975–present.	Many	other	stations	have	been	sampled	as	well	but	are	no	longer	active.	See	Novick	



et	al.	(2015)	for	background	on	additional	stations	as	well	as	mass	balance	and	1-D	hydrodynamic	and	
water	quality	modeling	approaches

	

Figure	1	–	Map	of	stations	in	Delta	DWR-IEP	water	quality	monitoring	program.		

Description	of	parameters	
In	this	analysis,	we	focus	on	inorganic	macronutrients—nitrate	+	nitrite	(NO2+3

-),	ammonium	(NH4
+),	

phosphate	(PO4
3-),	and	silicate—as	they	are	the	primary	drivers	of	phytoplankton	productivity.	We	also	

examine	chlorophyll	a	(chl-a)	and	dissolved	oxygen	(O2)	concentration	time-series	in	order	to	more	
directly	probe	eutrophication	and	its	effects	on	the	Delta	ecosystem.	Temperature	and	conductivity	are	
examined	in	order	to	illustrate	physical	drivers	of	variability.		

Per-site	deseasonalization	
In	order	to	inspect	longer	trends	more	closely	and	perform	normalized	site-to-site	comparisons,	we	
remove	the	seasonal	(i.e.,	monthly)	cycle	on	a	per-site	basis.	The	seasonal	cycle	for	a	given	parameter	P	
at	a	given	station,	Ps,	is	calculated	as	the	mean	of	all	measurements	of	P	in	a	given	month,	𝑃!,!.	

Similarly,	the	standard	deviation	of	all	measurements	of	P	in	a	given	month	is	reported	as	𝑠𝑑!!,!.	We	
remove	the	seasonal	mean	and	standard	deviation	by	subtracting	the	mean	then	dividing	by	the	
standard	deviation,	such	that	a	normalized	parameter,	Ps,n,	is	defined	as:		



𝑃!,! =
!!!!!,!
!"!!,!

.	The	normalized	parameters	can	be	thought	of	as	local,	monthly	indices	with	a	mean	of	

zero	and	standard	deviation	of	one	across	the	entire	time-series.		

Factor	analysis	
In	order	to	retrieve	the	dominant,	latent	factors	driving	each	time-series,	we	next	performed	a	matrix	
decomposition	on	the	raw	time-series	using	NMF.	PCA	and	NMF	are	similar	in	concept	in	that	they	both	
decompose	a	matrix	whose	first	dimension	(e.g.,	rows	of	the	matrix)	represents	time	and	second	
(columns)	represents	variables	(one	or	more	parameters	at	one	or	more	locations)	into	components	
(both	temporal	and	spatial)	that	can	be	linearly	recombined	to	retrieve	the	original	matrix.	They	differ	in	
NMF’s	major	constraint	of	non-negativity	on	both	input	data	and	resulting	components.		This	constraint	
implies	that	in	the	linear	recombination,	PCA’s	components	can	be	added	and	subtracted	whereas	
NMF’s	can	be	added	(i.e.,	superimposed)	only.	Data	were	input	to	the	NMF	calculator	after	subtracting	
the	minimum	and	then	dividing	by	the	standard	deviation	of	each	time-series.	While	factor	analysis	does	
lend	itself	to	simultaneous	analysis	of	multiple	parameters,	we	chose	to	treat	parameters	separately	in	
order	to	find	common	and	distinct	drivers	across	sites	on	a	per-parameter	basis.	Station	D19	is	dropped	
from	the	factor	analysis	due	to	large	data	gaps	which	artificially	skew	the	results.		

The	number	of	NMF	modes	can	range	from	one	to	the	number	of	input	parameters.	We	attempt	to	
reconstruct	the	original	time-series	using	the	NMF	model	by	superimposing	modes:	that	is,	we	multiply	
the	weight	vector	(which	represents	the	strength	of	a	given	mode	across	stations)	by	the	time-series	
expression	of	that	mode	in	order	to	get	the	weighted	time-series	at	each	station.	These	reconstructed	
time-series	(one	time-series	per	mode	per	station	per	parameter)	are	still	expressed	in	their	
minimum/standard	deviation-removed	transformations.	We	superimpose	all	modes	for	a	given	
parameter	at	a	given	station	by	multiplying	the	modes	by	that	original	time-series’	standard	deviation	
and	adding	a	baseline	of	that	time-series’	minimum	value.	The	time-series	reconstructed	through	this	
linear	recombination	is	referred	to	as	the	NMF	model.	The	relative	contribution	of	each	mode	to	the	full	
reconstruction	is	calculated	on	a	per-site	basis	as	the	spatial	weight	of	that	mode	at	that	site	times	the	
average	of	the	time-series	of	that	mode	divided	by	the	sum	of	those	contributions	from	each	mode.	We	
assess	the	NMF	model’s	ability	to	match	observed	data	by	examining	the	NMF	model	vs.	observed	data	
plot’s	R2	and	coefficient	of	variation	of	the	root	mean	square	error: 𝐶𝑉(𝑅𝑀𝑆𝐸) = !"#$

!
	where	𝑃	is	the	

average	of	a	given	time-series.		

All	analysis	was	performed	using	Python	2.7	using	scikit-learn,	pandas,	and	numpy	toolboxes.	

Results	
We	first	examine	the	“raw”	time-series	of	dissolved	inorganic	nutrients,	dissolved	oxygen,	and	
chlorophyll-a	concentrations	at	our	eleven	stations	(Figure	2).	There	are	several	salient	features	in	this	
observational	record.	First,	the	time-series	of	each	parameter	tends	to	be	dominated	by	the	behavior	at	
one	or	two	sites.	Stations	C10,	P8	and	MD10,	the	southeastern-most	stations,	have	striking	features	that	
obscure	the	other	stations.		



	

Figure	2	–	Time-series	plots	of	temperature,	conductivity,	NO2+3
-,	NH4

+,	PO4
3-,	Si(OH)4,	O2,	and	chl-a	at	11	active	Delta	stations.	

We	next	plot	the	same	parameters	at	eight	stations,	removing	the	dominant	C10,	P8,	and	MD10	time-
series	and	zooming	in	on	the	most	recent	decade,	in	order	to	examine	the	other	patterns	more	closely.	



	

Figure	3	–	Same	as	Figure	2,	zoomed	in	on	both	time	(2003–2013)	and	y-axes	and	removing	C10,	P8,	MD10,	and	C3	for	closer	
visual	inspection.		



	

Figure	4	–	Untransformed	PO4
3-	(µM)	with	respect	to	year	and	month.	Black	denotes	gaps	in	data	record.		

Note	the	banding	in	both	horizontal	and	vertical	dimensions	in	Figure	4	corresponding	to	seasonal	
trends	(apparent	as	vertical	bands)	and	longer-term	(multi-year)	trends	(apparent	as	horizontal	bands).	
A	dominant	feature	in	the	data	for	all	parameters	in	Figure	2	and	Figure	4	is	the	seasonal	cycle.		



	

Figure	5	–	Seasonal	mean	climatologies	of	temperature,	conductivity,	NO2+3
-,	NH4

+,	PO4
3-,	Si(OH)4,	O2,	and	chl-a	at	11	active	

stations	with	stations	divided	into	two	groups	to	show	the	radically	different	behavior	at	stations	C10,	C3,	MD10,	and	P8	
compared	to	the	others	which	exhibit	visually	similar	patterns	in	seasonal	trends.		

DIN,	DIP,	O2,	and	chl-a	(Figure	5)	show	moderate	summer–winter	seasonality,	again,	largely	obscured	by	
the	dominant	C10,	P8,	MD10,	and	C3	patterns.		

We	next	normalize	the	time-series	data,	Ps,m,	by	subtracting	the	mean	and	dividing	by	the	standard	
deviation	such	that	all	normalized	monthly	parameters	have	a	mean	of	zero	and	standard	deviation	of	
one.	The	purpose	of	performing	this	normalization	is	twofold:	first,	it	allows	us	to	inspect	the	seasonal	
mean	and	standard	deviation	across	all	parameters	at	all	sites	and,	second,	it	allows	subsequent	analysis	
to	weigh	all	variables	equally.		



	

Figure	6	–	Deseasonalized/normalized	PO4
3-	with	respect	to	year	and	month.	Colorbar	represents	the	unitless	PO4

3-	patterns.	
Black	represents	absence	of	data.		

Following	this	normalization,	we	see	that	all	banding	(Figure	7)	appears	in	the	horizontal	direction,	
corresponding	to	annual	trends.	The	strongest	(most	positive)	anomalies	tend	to	occur	prior	to	1995,	
with	the	five	years	from	1986–1991	showing	the	most	distinct	increase	across	all	stations.		

We	next	zoom	in	on	the	most	recent	twenty	years	in	order	to	observe	greater	detail.	

Once	we	normalize	all	variables	by	their	monthly	mean	and	standard	deviation	(Figure	7),	we	are	able	to	
examine	the	parameters	more	closely	for	multi-year	trends.	Taking	the	annual	means	of	each	of	the	
deseasonalized	variables	(or,	equivalently,	taking	the	average	of	horizontal	bands	in	Figure	7–Figure	14)	
and	applying	a	five-year	rolling	mean	in	order	to	smooth	the	data,	we	begin	to	see	longer-term	trends,	
indicative	of	anthropogenic	forcing.		



	

Figure	7	–	Yearly	means	of	all	deseasonalized/normalized	parameters	at	all	stations.	Again,	signals	are	largely	dominated	by	
several	stations,	obscuring	some	commonalities	among	interannual	trends;	however,	it	is	readily	seen	that	many	parameters	
behave	similarly	across	the	region.		

Figure	8	shows	water	quality	trends	over	the	full	dataset.	Note	again	that	this	represents	the	mean	and	
standard	deviation-removed	data;	in	order	to	retrieve	the	site	and	month-specific	magnitude	and	
variability,	one	must	multiply	these	results	by	the	seasonal	mean	and	standard	deviation	matrices	
represented	by	Figure	5	and	Figure	6.		

Non-negative	matrix	factorization	
We	next	turn	to	the	NMF	analysis	in	order	to	attempt	to	extract	additional	information	not	as	readily	
apparent	in	the	raw	or	climatological	time-series.	As	described	in	the	Methods,	the	number	of	modes	
can	range	from	one	to	the	number	of	input	variables/stations.	Visual	inspection	using	a	range	of	modes	
tested	here	suggested	that	four	modes	successfully	captured	sufficient	variability	across	all	variables;	at	
the	end	of	this	section,	we	will	describe	additional	quantitative	assessments	of	the	NMF	model	using	the	
full	range	of	modes.		



	

Figure	8	–	An	illustration	of	the	capabilities	of	NMF	using	temperature	as	a	test	case.	Columns	represent	the	different	modes;	
four	modes	were	used	in	this	analysis.	The	top	row	shows	the	spatial	weight	vector	for	each	mode	where	the	color	of	the	dot	
corresponds	to	the	local	weight	of	that	column’s	mode.	The	bottom	row	illustrates	the	time-series	vector	of	each	mode	plotted	
with	magnitude	as	a	function	of	year	and	month;	magnitude	ranges	from	0	(blue)	to	that	mode’s	maximum	value	(red).		

First	examining	temperature,	we	note	that	the	NMF	analysis	behaves	as	would	be	expected	from	the	
time-series	plots	(Figure	2).	As	can	be	seen	in	Figure	8,	mode	1	represents	the	strong	seasonality	which	
is	both	intuitive	and	evident	in	all	temperature	records	across	the	region.	Less	obvious	in	the	full	time-
series,	however,	but	extracted	in	modes	2–4	here	are	additional	features	which	represent	both	event-
scale	(locally	high	patterns	evident	as	red	blotches	in	mode	2)	and	interannual	cycles	(evident	as	larger	
red	blotches	with	some	horizontal	banding	in	modes	3–4).	It	is	notable	that	NMF	3	is	expressed	solely	at	
Station	C10	(the	only	red	dot	in	the	NMF	3	regional	plot)	while	NMF	4	is	expressed	solely	at	Station	C3.	
In	other	words,	while	the	time-series	may	line	up	visually,	they	are	mathematically	distinct	in	the	NMF	
analysis	and	these	additional	features	(deeper	reds	in	June–July	of	NMF	3	and	slightly	more	spread	out	
peaks	in	NMF	4)	suggest	important	subregional	differences,	even	in	temperature.		



	

Figure	9	–	NMF	modes	representing	the	dominant	factors	in	NH4
+	variability.	The	colored	title	labels	correspond	to	the	

reconstructed	time-series	plots	below.		

The	NMF	analysis	of	ammonium	(Figure	9)	shows	some	additional	features	beyond	the	seasonality	
evident	in	the	time-series	plots.	First,	the	grouping	of	the	weights	across	stations	(top	row)	suggests	
that,	while	the	Suisun	Bay	subregion	stations	behave	similarly,	stations	in	the	Central	Delta	subregion	
tend	to	be	more	heterogeneous	(evident	in	the	heterogeneous	colors	of	the	dots	in	the	top	row	of	NMFs	
2–4).	Also	noteworthy	is	that,	while	seasonality	appears	to	be	a	primary	driver	of	variability	(Figure	2,	
Figure	3),	that	seasonality	is	extracted	as	mathematically	unique	across	different	subregions,	and	even	
among	different	stations	within	a	given	subregion,	in	the	NMF	analysis	(Figure	9).	Modes	1,	2,	and	4	all	
have	a	notable	seasonal	component	(as	evident	in	the	vertical	banding	in	the	bottom	row	of	Figure	9);	
however,	there	is	significant	interannual	variability	in	this	seasonality	that	also	varies	across	stations.		

NMF	plots	such	as	those	shown	in	Figure	8	and	Figure	9	are	shown	in	the	Appendix	for	the	remaining	
parameters	(conductivity,	nitrite+nitrate,	phosphate,	silicate,	dissolved	oxygen,	and	chlorophyll).		



	
Figure	10.	Time-series	(left)	and	percent	contribution	of	modes	(right)	for	ammonium	(in	units	of	micromolar).	The	time-series	
are	reconstructed	by	superimposing	the	four	factors.	Colors	represent	contributions	from	the	NMF	modes—1-blue,	2-orange,	3-
green,	4-magenta—and	the	black	line	represents	observations.	Please	see	the	Appendix	to	Task	2	for	additional	details	on	
superimposition	of	NMF	modes	and	additional	figures.	
	



	
Figure	11.	Time-series	(left)	and	percent	contribution	of	modes	(right)	for	phosphate	(in	units	of	micromolar).	The	time-series	are	
reconstructed	by	superimposing	the	four	factors.	Colors	represent	contributions	from	the	NMF	modes—1-blue,	2-orange,	3-
green,	4-magenta—and	the	black	line	represents	observations.	Please	see	the	Appendix	to	Task	2	for	additional	details	on	
superimposition	of	NMF	modes	and	additional	figures.	
	
An	important	trait	of	this	factor	analysis	approach	is	that,	since	factors	are	all	non-negative,	they	can	be	
reconstructed	through	a	straightforward	superimposition.	Continuing	with	the	ammonium	example,	we	
attempt	to	reconstruct	the	original	time-series	for	each	station	according	to	the	procedure	described	in	
the	Methods.	This	time-series	reconstruction	helps	to	emphasize	several	features	from	the	NMF	mode	



plot	(Figure	9).	For	example,	it	is	immediately	clear	that,	while	the	absolute	magnitudes	of	ammonium	
concentrations	vary	across	stations,	similar	drivers	(i.e.,	modes)	are	found	in	many	of	the	stations.		

	

Figure	12	–	Fit	between	NMF	reconstructed	(model)	and	observed	ammonium	at	Station	C3	using	1,	4,	and	10	modes	(left,	
center,	right,	respectively).		

Table	1	–	Statistics	representing	the	goodness	of	fit	for	one	to	ten	modes	in	the	NMF	analysis	of	each	parameter.	

	

It	is	clear	from	the	results	presented	in	Table	1	that	while	some	parameters	are	effectively	modeled	with	
only	a	few	modes	representing	variability	across	the	entire	region	(e.g.,	temperature),	most	parameters	
an	only	be	well	characterized	using	more	modes.	We	chose	four	modes	for	the	presentation	of	the	
results	shown	here	as	that	allows	for	R2	>	0.8	across	the	nutrient	parameters	which	we	were	most	
concerned	with	characterizing	in	the	analysis.	Chlorophyll	variability	requires	six	modes	in	order	to	fit	
the	reconstruction	at	R2	>	0.8;	this	finding	reinforces	our	understanding	that	the	regional	biology	is	
particularly	heterogeneous	in	comparison	to	physical	and	chemical	parameters	which	can	be	described	
with	fewer	modes.		

	
	 	



	
Attribution	of	NMF	modes	
The	remaining	NMF	figures	are	shown	in	the	Appendix;	here	we	synthesize	the	major	findings.		

Table	2	–	Attribution	of	parameter–mode	combinations	to	known	and	hypothesized	physical/chemical/biological	drivers.	Green	
represents	best	understood	drivers,	not	necessarily	most	important.	

	

	

	

Nitrite+nitrate	 Ammonium	 Phosphate	 Chlorophyll	

NMF 
Mode #	

1	 Mild interannual cycling, 
largely open bay effect	

Seasonal freshwater 
flow/dilution effects	

Freshwater 
flow/dilution 

effects	
Clams move 
into Suisun	

2	

Seasonal freshwater 
flow/dilution effects	 Spike in 1996-97	

Seasonal cycle 
changes due 
to freshwater/ 

loading	

(sub)regional 
similarity 

among eastern 
Central Delta 

and 
Sacramento 

River	

3	

Nitrification + something 
happening in upper 

watershed, flow effects 
(inversely related to 

freshwater input)	

Highly localized effect 
at C3/D26, 

Sacramento 
River/watershed 

effect, this should in 
theory look very 
similar to NMF 4 

because the known 
drivers are changing 
in a similar way. The 

fact that it doesn't 
suggests that there 
are other processes 

at play here.	

Seasonal cycle 
changes due 
to freshwater/ 

loading	

(sub)regional 
similarity 

among western 
Central Delta 

stations - could 
this be clam 

effect as well?	

4	

Spike in Feb 2006-07	
Local wastewater 

treatment, nitrification	

Phase-out of 
phosphates in 

detergents, 
flow	

Independent 
trend 

(summertime 
blooms vary in 
magnitude on 

interannual 
basis) in San 

Joaquin	

	



Conclusions	
We	examined	the	time-series	of	dissolved	inorganic	macronutrients,	dissolved	oxygen,	and	chlorophyll-a	
concentration	at	eleven	stations	across	the	Sacramento–San	Joaquin	River	Delta	over	the	past	four	
decades	with	a	focus	on	elucidating	important	patterns	in	both	space	and	time.		

Among	the	many	well-known	drivers	of	biogeochemical	variability	in	the	Delta	are	several	hidden	or	
latent	drivers.	Their	variability	in	time	and	space	is	obscured	by	other,	perhaps	larger	or	more	readily	
apparent,	drivers.	Non-negative	matrix	factorization	is	shown	to	be	capable	of	extracting	these	latent	
drivers	and	determining	their	relative	importance	in	biogeochemical	variability—a	necessary	step	
toward	fully	characterizing	this	heterogeneous	ecosystem.		

Several	of	the	most	striking	features	of	this	dataset	included	the	following.	1)	We	observed	anomalous	
behavior	at	multiple	sites	in	comparison	with	the	others,	especially	at	stations	C10,	P8,	and	MD10.	2)	
There	is	strong	seasonality	in	most	parameters,	a	pattern	extracted	in	the	climatological	analysis	and	
also	seen	in	many	individual	NMF	modes.	3)	Interannual	variability	can	be	observed	in	both	
deseasonalized/normalized	annual	trend	plots	(Figure	7)	and	frequently	in	individual	NMF	modes.	These	
interannual	trends	can	be	attributed	to	natural	cycles	(e.g.,	El	Niño/La	Niña)	and	management	actions	
(e.g.,	phase-out	of	phosphates	in	detergent,	changes	to	nitrification	of	wastewater).	And	4)	additional	
latent	drivers	that	are	hard	to	detect	through	other	means	can	be	found	in	the	dataset	utilizing	the	NMF	
approach	described	here.	NMF	allows	a	careful	assessment	on	a	common	footing	of	variability	among	
parameters	with	very	different	statistics.		

We	also	wish	to	emphasize	that	while	NMF	analysis	was	applied	to	this	already	well	characterized	
ecosystem	and	was	used	to	illustrate	several	known	changes	in	biogeochemistry,	it	is	clearly	suited	for	a	
similar	type	of	analysis	in	a	less	studied	ecosystem.	The	NMF	methodology	does	not	inherently	include	
spatial	proximity	(i.e.,	it	doesn’t	“know”	subregions	a	priori)	but	proved	capable	of	demonstrating	
similarity	and	heterogeneity	within	and	across	subregions.	While	this	analysis	was	performed	on	data	
with	a	long	time	dimension	and	a	shorter	spatial	dimension,	it	could	be	similarly	applied	to	data	with	
different	(or	greater)	dimensionality	(including	any	of:	depth,	greater	resolution	in	latitude,	and/or	
longitude).		

Recommendations	
Furthermore,	while	the	NMF	analysis	suggests	that	the	Suisun	Bay	stations	behave	fairly	similarly,	there	
is	significant	heterogeneity	across	the	remainder	of	the	region,	both	in	comparison	to	Suisun	Bay	and	in	
comparison	to	each	other	station.	This	feature	is	evident	in	the	scatterplot	maps	of	the	NMF	plots	(e.g.,	
Figure	9)	where,	even	for	a	given	mode	within	a	given	subregion,	the	dots	(i.e.,	weights	of	the	NMF	
modes)	are	different	colors.	We	demonstrate	that	the	most	variability	is	observed	in	the	Central	Delta	
subregion,	where	NMF	modes	are	frequently	weighted	differently,	sometimes	covering	the	full	range	of	
variability	in	a	given	mode	just	within	that	subregion	(e.g.,	Figure	9,	NMF	4).	We	are	unable	to	
characterize	variability	in	the	Northwest	(Cache	Slough	and	Deep	Water	Shipping	Channel)	and	
NorthEast	(Mokelumne	and	Cosumnes	Rivers)	subregions	as	there	are	no	stations	within	those.	We	
recommend	that	each	subregion	have	at	least	two	stations	in	order	to	characterize	heterogeneity	both	
within	and	among	subregions.	The	Central	Delta	has	proven	to	be	particularly	heterogeneous	through	
the	NMF	analysis	and	we	therefore	recommend	that	at	least	four	time-series	stations	be	maintained	
there.	Stations	D7	and	D8	behave	most	similarly	across	all	parameters	throughout	the	NMF	analysis;	if	



any	station	must	be	moved	to	accommodate	the	recommendations	above,	we	suggest	that	one	of	two	
be	relocated	as	the	biogeochemical	information	collected	there	appears	to	be	largely	redundant.		
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Figure	13	–	NMF	analysis	of	conductivity.	



	

Figure	14	–	NMF	analysis	of	nitrite+nitrate.	

	

Figure	15	–	NMF	analysis	of	phosphate.	



	

Figure	16	–	NMF	analysis	of	silicate.	

	

Figure	17	–	NMF	analysis	of	dissolved	oxygen	(%	saturation).	



	

Figure	18	–	NMF	analysis	of	chlorophyll	a	concentration.		


