Stormwater Modeling – Formula for Success

Regional Monitoring Program Annual Meeting

Roger Bannerman October 9, 2012

What are We Going Cover ?

1. Justification for WI Performance Standards. 2. Performance by Design – Steps in **Modeling Sources** and Practice Effectiveness 3. Reducing Uncertainty – Monitoring Results 4.Example Stormwater Plan.

Institutional Process

State Statute (281.16)

Describe intent

Administrative Rules

Establish specific goals: Performance standards Local Ordinances

Technical Standards

How to achieve performance standards

The Runoff Management Rules (NR 151)

TMDLs

Reduce: Phosphorus, Bacteria, Turbidity

Post-Construction Performance Standards – Suspended Solids For New Development, by design, Reduce to the MEP the Average Annual Total Suspended Solids Load by 80% as Compared to No **Runoff Management Controls.**

Reduce Average Annual Total Suspended Solids Load by 40% for Redevelopment.

Developed Area Performance Standards – Stage 1& 2

Permitted Municipalities Must:

Stage 1: Reduce TSS by 20% as Compared to No Controls (by 2008).

Stage 2: Reduce TSS by 40% as Compared to No Controls (by 2013).

Example of Water Samples Collected From Residential Storm Sewers – Total Suspended Solids

% Total P that is Particulate

- Mixed Land Use 60% (Bannerman, 1996)
- Med. Resid. 74 %
- (Selbig, 2007)
- Parking Lot 72 %
- (Horwatich, 2004)

Milwaukee Streams – 87 % (Bannerman,1996)

Lake Mendota – Madison, WI

% Copper and (Zinc) that is Particulate

Mixed Land Use – 75% (55%) (Bannerman, 1996)

Med. Resid. – 84 %

(80%) (Selbig, 2007)

Freeway – 74 %

(78%) (Horwatich, 2011)

Milwaukee Streams – 76 % (64%) (Bannerman,1996)

Steps in Stormwater Modeling to Achieve MS4 Permit TSS Reduction Requirements

- Select and Calibrate Urban Water Quality Model
- Use Computer Model to Calculate TSS Loads (by Drainage Area, Landuse, and Source Area) for "No Control" Condition
- Determine Existing % Control for the City
- Identify Additional Measures Needed to Meet Required TSS Reduction
 - Include regional and source control measures
 - Select Most Cost Effective Combination of Stormwater Control Measures
- Implement Plan

Example Sediment Pollution Goal Calculation

Must achieve <u>40%</u> reduction of Total Suspended Solids

- 1."Base" (no management) Condition = <u>1,000</u> <u>tons/yr</u>
- 2. 40% Reduction Goal = 600 tons/yr (reduce by 400 tons)
- 3. Existing Management Condition = **<u>850 tons/yr</u>**
- 4. Thus, Existing Management = 15% Reduction
- 5. Must Further Reduce TSS by: 250 tons / yr to reach 40%

WDNR Modeling Guidelines

- Rainfall data standardized (5 regions)
- Municipal land use represented by DNR defined land use files.
- Requirements for determining "Analyzed Area"
- "Base Conditions" drainage system standardized
- Each Existing and Proposed BMPs included in modeling
 Modeling Guid

Modeling Guidelines create Consistency Source Loading and Management Model (SLAMM) Inputs and Outputs

Soil Type Volume and Landuse Pollutant Area **SLAMM** Load Rainfall Mass Balance Development **Characteristics** Description of **Robert Pitt & John Voorhees Practices**

2. Control Devices Included in WinSLAMM

Hydrodynamic devices

- Development characteristics
- Wet detention ponds
- Porous pavements
- Street cleaning
- Green/blue roofs

- Catchbasin cleaning
- Grass swales and grass filtering
- Biofiltration and bioretention
- Water tanks and stormwater use
- Media filtration/ion exchange/sorption

🔂 File Current File Data Pollutants Tools Run Utilities Help

2

_ & ×

_ 8 ×

Keside	ential 2							
Source Area #	Source Area		Area (acres)	Source Area Parameters	Fir Con Prac	st trol tice	Second Control Practice	4
	Roofs		0.000		1.00		1 100.000	
1	Roofs 1					-	-	
2	Roofs 2					-	-	
3	Roofs 3					-	-	
4	Roofs 4					•	-	
5	Roofs 5					•	-	Π
6	Roofs 6					Ŧ	-	
7	Roofs 7					•	-	
8	Roofs 8					•	-	
9	Roofs 9					•	-	
10	Roofs 10					Ŧ	-	
11	Roofs 11					٠	-	
12	Roofs 12					•	-	
	Parking		0.000					
13	Paved Parking 1					•	-	
14	Paved Parking 2					•	-	
15	Paved Parking 3					•	-	
16	Paved Parking 4					٠	-	
17	Paved Parking 5					Ŧ	-	
18	Paved Parking 6					Ŧ	-	
19	Unpaved Parking 1					Ŧ	-	
20	Unpaved Parking 2					Ŧ	-	
21	Uppaved Parking 3					-	-	-
Land Use #	Land Use Type	Land Use Label Land Use Label Area (acr		nd Use 1 (acres)	4			
1	Institutional	Institutional 1			6.000			
2	Industrial	Industrial 1				3.000		
3	Residential	Resid	dential 1	itial 1		0.000		
4	Residential Resider		dential 2				0.000	
								_
								-
CP #	Control Practice Typ	e	Control Pr	ractice Name	e or L	ocat	ion	
1	Filter Strip Source Area Device, LU#1, SA#13							

Source Area Device, LU#1, SA#14

Source Area Device, LU#1, SA#15

Wet Pond 1

Biofilters 1

2

3

4

5

Cistern

Grass Swales

Wet Pond

Biofilters

Institutional 1	Industrial 1	
	ounction 1	
Residential 1	Wet Pond 1	
	Junction 2	
	Biofilters 1 Residential	2
	Cutfall	

Version 10 has complete hydrograph and particle size routing – practices in series

Model Strength – Based on Extensive Field Monitoring Data: >Source Areas – Roofs, Streets, etc. >End of Pipe – Many Land uses >Stormwater Control Practices

Lawn Sheet Flow Sampler: Tipping Bucket for Flow and Cone Splitter for Water Sample

Source Area Sampling

End of Pipe Monitoring :Mass Balance

Model Results for Mixed Resid. / Comm. Landuse – 984 acres

Draft 5/16/01

Residential TSS Concentrations Used in SLAMM - .psc

Comparison of Measured and Predicted Suspended Solids Loads

Site	Landuse	Percent Difference
Harper	Residential	11%
Marquette	Resid./Comm.	28%
Canterbury	Resid./Comm.	35%
Superior	Commercial	-30%
Syene	Light Industrial	1%
Badger Rd.	Light Industrial	-14%

Zinc Concentrations in Runoff from Source Areas

Observed VS. Predicted for Total Zn at Superior – 22 acres

% Suspended Solids Loads from Source Areas in 4 Subwatersheds

% Total P Loads for Four Subwater-sheds in Lake Wingra Basin

New Source Area Sampling

Monitoring to Reduce Uncertainty in Technical Standards & Model

- Site Evaluation Standard
 Bioretention Standard
- Infiltration Basin Standard
- Grass Swale Standard
- Rain Garden Standard
- Hydrodynamic Separator Std
- Wet Detention Pond Standard
- Proprietary Filters

Check Current File Status | Total Area = 9.000 acres | Element Number = 4 | Remaining Elements = 250 | Start Date: 07/01/81 | End Date: 07/15/81

WinSLAMM Version 10 – Stormwater Management Practices in Series

Example: City of Fond du Lac, WI Population: 45,000

bert Lea

Area: 12,870 acres

How is MS4 Permit Pollution Reduction Requirement Met?

 Use Computer Model to Calculate Sediment Pollution Quantity
 "Base" (no management) Condition

Base Load = 1,298 Tons TSS/Year

How is MS4 Permit Pollution Reduction Requirement Met?

- Use Computer Model to Calculate Sediment Pollution Quantity
 - "Base" (no management) Condition
- Determine Existing % Control for the City

Existing Load (in 2006) = 1,122 Tons TSS/Year or 13.6% Reduction

Stormwater Management Plan

- Current city management measures
 - Street sweeping
 - Wet detention basins
 - Roadside drainage swales
 - Fall leaf pick-up

Currently reducing pollution by 13%

How is MS4 Permit Pollution Reduction Requirement Met?

- Use Computer Model to Calculate Sediment Pollution Quantity
 - "Base" (no management) Condition
- Determine Existing % Control for the City
- Identify Measures to Meet Required Sediment Reduction

Post Implementation Load (in 2012) = 723 Tons TSS/Year or 44.3% Reduction

Stormwater Management Plan

To meet 40% reduction goal

- Maintain current street cleaning practices
- Maintain current stormwater control measures
- Maintain catch basin sumps annually
- Construct 5 new wet detention basins
- Retrofit 2 existing wet detention basins
- Construction Cost = \$4,354,400

Design Fees = \$329,200

Estimated annual maintenance cost = \$107,300

Steps in Stormwater Modeling to Achieve MS4 Permit TSS Reduction Requirements

- Select and Calibrate Urban Water Quality Model
- Use Computer Model to Calculate TSS Loads (by Drainage Area, Land use, and Source Areas) for "No Control" Condition
- Determine Existing % Control for the City
- Identify Additional Measures Needed to Meet Required TSS Reduction
 - Include regional and source control measures
 - Select Most Cost Effective Combination of Stormwater Control Measures
- Implement Plan

Questions?

Ken B. and Roger B. in Milwaukee ~1981