A multi-agency pilot project on contaminants of emerging concern (CECs) in California coastal bivalves

Keith Maruya

Southern California Coastal Water Research Project

RMP 2012 Annual Meeting October 9, 2012

NOAA

"Mussel Watch"

A Sentinel for Safe, Healthy & Productive Coasts

QUICK FACTS

Only program of its kind that is national in scope; 300 Sites nationwide

Longest running coastal contaminant monitoring program(25 years)

120 chemicals measured in oysters, mussels and sediment

Broad federal, state & local partnerships

NOAA | National Ocean Service | National Centers for Coastal Ocean Science National Status & Trends Program – Mussel Watch

Polybrominated Diphenyl Ethers in <u>Mytilus spp.</u>: A National Perspective (2006)

REGION -- STATE

REFOCUSING MUSSEL WATCH

- Stakeholders wanted more focus on CECs
 - NOAA agreed and held a 2009 workshop in CA to redesign the program

Annual 2009 MW budget re-directed for CA pilot study

- \$475K from NOAA; \$360K for analytical costs
- Leveraging from multiple partners doubled funds committed to study
- Key capabilities and expertise also brought to table

Multiagency committee formed to establish study elements

- CEC analyte list
- Expansion/relocation of sampling stations
- Sampling schedule & logistics
- Analytical performance goals
- Data management & interpretation

PARTICIPANTS

Planning

- K. Maruya, S. Bay, S. Weisberg (SCCWRP)
- D. Gregorio, (SWRCB)
- S. Klosterhaus, M. Sedlak, J. Davis (SFEI)
- J. Christensen, G. Lauenstein, K. Kimbrough, T. Collier (NOAA)
- D. Alvarez, E. Furlong (USGS)
- T. Smith, L. Huff (EPA)
- J. Kucklick (NIST)

Field Collection

- C. Beegan, E. Siegel, E. Duncan (SWRCB)
- D. Tsukada, D. Diehl (SCCWRP)
- P. Salop (Applied Marine Sciences)
- J. Engle (Marine Science Institute, MARINe)

STUDY OBJECTIVES

- What is the occurrence (freq of detection, concentration) of CECs in the coastal California environment?
- How does CEC occurrence vary with land use?
- How does CEC occurrence vary with proximity to discharge of WWTP effluent and stormwater runoff?
- What CECs are detectable in the water column using passive sampling devices (PSDs)?
- What is the relationship between CEC accumulation by PSDs and bivalve tissue?

TARGET CECs

• Mussel (*Mytilus* spp.) tissue

- Pharmaceuticals & personal care products (PPCPs)(88 analytes)
 - o e.g. carbamazapine, triclosan
- Industrial & commercial chemicals (52 analytes)
 - flame retardants (PBDEs, HBCD)
 - surfactants (4-nonylphenol)
- Current use pesticides (27 analytes)
 - o pyrethroids, chlorpyrifos, dachthal
- Nanomaterials (single walled C nanotubes)
- Persistent organic pollutants (120 analytes)
- Trace metals (14)

PSDs

- Polyethylene & solid phase microextraction (SPME) devices
 - POPs (PCBs, DDTs, chlordanes) (>80 analytes)
- Polar chemical integrated sampler (POCIS) (156 analytes)
 - water soluble CECs (e.g. synthetic musks)

MORE PARTICIPANTS

Analytical

- J. Ramirez, A. Brewster (TDI Brooks)
- R. Grace, C. Navaroli (Axys Analytical)
- M. LaGuardia (VIMS)
- L. Ferguson (Duke)
- W. Lao (SCCWRP)
- K. Smalling (USGS)

Data interpretation and synthesis

- N. Dodder. R. Schaffner (SCCWRP)
- M. Edwards, A. Jacob, S. Bricker, G. Piniak (NOAA)

OCCURRENCE OF CECs

Tissue Analyte (ng/					
	POCIS Analyte		Water Concentration (ng/L)		
		Freq Det	Mean	Min	Max
	Bromoform	100	32	5.3	77
4-Nonyiphenoi won	Tris(1-chloro-2-propyl)phosphate (TCPP)	90	410	ND	3100
	Diethyl phthalate	90	150	ND	600
4-Nonylphenol	Diethylhexylphthalate (DEHP)	80	400	ND	1105
4-Nonylphenol Diet	Galaxolide (HHCB)	80	150	ND	1300
	Acetophenone	80	11	ND	47
BDE-47	Cotinine	80	2.7	ND	6.3
	d-Limonene	70	15	ND	46
DDMU	Caffeine	70	10	ND	32
Sertraline	Tributyl phosphate	70	6.6	ND	25
	Carbamazepine	70	2.6	ND	21
Lomefloxacin	Trimethoprim	70	0.3	ND	2
	N,N-diethyltoluamide (DEET)	60	10	ND	69
BDE-99	Tris(2-chloroethyl)phosphate (TCEP)	60	7.6	ND	56
HBCD, gamma	Camphor	50	30	ND	92
	Benzophenone	50	0.89	ND	5.1

EFFECT OF LAND USE

EFFECT OF DISCHARGE

PSD VS. TISSUE ACCUMULATION

SUMMARY AND CONCLUSIONS

- Most targeted CECs were very low or not detected
- PBDEs and alkylphenols were frequently detected in mussels at concentrations similar to POPs
- CEC concentrations were higher on average at stations
 - in urban areas
 - impacted by stormwater

 Coastal water quality monitoring programs should focus on urbanized waterways impacted by stormwater runoff

SUMMARY AND CONCLUSIONS (cont.)

- A different suite of CECs were frequently detected in water at ng/L concentrations
 - chlorophosphate flame retardants (e.g. TCEP)
 - phthalates
 - galaxolide
- Mytilus tissue concentrations of POPs and PAH were correlated with water concentrations determined from PSDs

PSDs can be employed in coastal monitoring of CECs that

- are not taken up by bivalves (e.g. water soluble PPCPs)
- bioaccumulate in bivalves such as Mytilus

SUMMARY AND CONCLUSIONS (cont.)

A multiagency partnership was created that resulted in

- the design and performance of a pilot study on CECs to inform coastal monitoring across CA
- increased spatial coverage and relevance of coastal monitoring sites to State, regional and local stakeholders
- leveraging of core federal program funds, key expertise and facilities, and in kind services from various partners that doubled the scope of the study
- a more comprehensive coastal water quality monitoring strategy ("Beyond Mussel Watch")

• Results will inform future regional and national CEC studies

- Background water quality (ASBS)
- Great Lakes Initiative
- Chesapeake/mid-Atlantic region
- Puget Sound