

Improved Forecasting for PCBs in San Francisco Bay

John J Oram, Jay A Davis

"A Legacy of PCB Contamination"

- Spread across watershed
- Deep in Bay sediments
- Associated with urban and industrial zones
- Levels pose health risks to humans and wildlife

PCB Sources, Pathways, and Loadings

Total External Loads ~ 33 kg/yr

(RMP's Latest Best Estimate for WY 2000-2005)

- Local Watersheds (20 kg/yr)
 - Diffuse sources
- Delta Outflow (11 kg/yr)
 - Low conc., large flows
 - Episodic flow-thru
- Wastewater (2 kg/yr)
- Atmospheric Dep. (0.5 kg/yr)
 - Volatilization > Deposition

Conceptual Model*

^{*} Based on 2002-2006 RMP data

A Multibox Model of SF Bay

A Day in the Life of the Multibox Model

Model Applications

- Hindcast
 - **1940-2002**
 - Model calibration and validation
 - Historic sediment and PCB budget
 - Assess model uncertainty
- Forecast
 - -2000-2099
 - Estimate future trajectory of Bay
 - Assess management options

Hindcast Results 1940-2002

Hindcast: Model Uncertainty

Model Uncertainty is: +/- 100% at 95% CI

Hindcast Results : Comparison to Observations

* Uncertainty expressed at 70% CI

Hindcast Summary

- Model compares well to observations
 - Model captures key processes
- Model uncertainty is known & quantified

→ OK to extrapolate into future ...

Forecast Assumptions

- Sedimentation
 - Lower South Bay depositional; Others erosional
- Watershed PCBs attenuate
- Climate conditions similar to last 30 years
 - Climate change captured by sea level rise and hydrograph modification
 - * Assessing probable future conditions of Bay given best current understanding

Vertical PCB Profiles in Sediment

Scenario 1 : Decreasing

Scenario 2: Increasing

Scenario 3 : Triangular

Scenario 4: Uniform

Forecast Results 2000-2099

Tributary Loading Scenarios

Vertical Profiles

Wastewater Loading Scenarios

Vertical Profiles

What Management Options Affect

Confidence in Model Estimates Bolstered by:

- Peer review
- Comparison to observations
 - Ability to reproduce spatial patterns and depth of maximum concentration
- Scenario testing
 - Pulse loads and extreme Delta loads
- Uncertainty and Sensitivity Analyses
- Independent testing by Tetra Tech
- Multiple iterations / Collaborative development

Summary of Forecast Findings

- Anticipate slow recovery of Bay
 - Northern reach faster than southern
- Effectiveness of management actions depends on PCB profile in sediments, degradation, and attenuation

Conceptual Model*

^{*} Based on 2002-2006 RMP data

Next Steps

- Reporting / Publishing
- Sediment coring pilot study
 - Incorporate results of sediment cores and recalibrate model as needed
 - Analyze wetland cores to estimate loading history and attenuation
- CFWG Guidance
 - Consider multiple contaminants
 - Look towards future models

Barrel Spills

Sedimentation

