Library
Our library features many hundreds of entries.
To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.
Recommended Best Practices for Collecting, Analyzing, and Reporting Microplastics in Environmental Media: Lessons Learned from Comprehensive Monitoring of San Francisco Bay. Journal of Hazardous Materials . SFEI Contribution No. 1023.
2020. Microplastics are ubiquitous and persistent contaminants in the ocean and a pervasive and preventable threat to the health of marine ecosystems. Microplastics come in a wide variety of shapes, sizes, and plastic types, each with unique physical and chemical properties and toxicological impacts. Understanding the magnitude of the microplastic problem and determining the highest priorities for mitigation require accurate measures of microplastic occurrence in the environment and identification of likely sources. The field of microplastic pollution is in its infancy, and there are not yet widely accepted standards for sample collection, laboratory analyses, quality assurance/quality control (QA/QC), or reporting of microplastics in environmental samples. Based on a comprehensive assessment of microplastics in San Francisco Bay water, sediment, fish, bivalves, stormwater, and wastewater effluent, we developed recommended best practices for collecting, analyzing, and reporting microplastics in environmental media. We recommend factors to consider in microplastic study design, particularly in regard to site selection and sampling methods. We also highlight the need for standard QA/QC practices such as collection of field and laboratory blanks, use of methods beyond microscopy to identify particle composition, and standardized reporting practices, including suggested vocabulary for particle classification.
Sampling and Quality Assurance and Quality Control: A Guide for Scientists Investigating the Occurrence of Microplastics Across Matrices. Applied Spectroscopy 74 (9) . SFEI Contribution No. 1012.
2020. Plastic pollution is a defining environmental contaminant and is considered to be one of the greatest environmental threats of the Anthropocene, with its presence documented across aquatic and terrestrial ecosystems. The majority of this plastic debris falls into the micro (1 lm–5 mm) or nano (1–1000 nm) size range and comes from primary and secondary sources. Its small size makes it cumbersome to isolate and analyze reproducibly, and its ubiquitous distribution creates numerous challenges when controlling for background contamination across matrices (e.g., sediment, tissue, water, air). Although research on microplastics represents a relatively nascent subfield, burgeoning interest in questions surrounding the fate and effects of these debris items creates a pressing need for harmonized sampling protocols and quality control approaches. For results across laboratories to be reproducible and comparable, it is imperative that guidelines based on vetted protocols be readily available to research groups, many of which are either new to plastics research or, as with any new subfield, have arrived at current approaches through a process of trial-and-error rather than in consultation with the greater scientific community. The goals of this manuscript are to (i) outline the steps necessary to conduct general as
well as matrix-specific quality assurance and quality control based on sample type and associated constraints, (ii) briefly review current findings across matrices, and (iii) provide guidance for the design of sampling regimes. Specific attention is paid to the source of microplastic pollution as well as the pathway by which contamination occurs, with details provided regarding each step in the process from generating appropriate questions to sampling design and collection.
Think Global, Act Local: Local Knowledge Is Critical to Inform Positive Change When It Comes to Microplastics. Environmental Science & Technology . SFEI Contribution No. 1024.
2020. Microplastic contamination in the marine environment is a global issue. Across the world, policies at the national and international level are needed to facilitate the scale of change needed to tackle this significant problem. However, sources and patterns of plastic contamination vary around the world, and the most pressing actions differ from one location to another. Therefore, local policies are a critical part of the solution; recognizing local sources will enable mitigations with measurable impacts. Here, we highlight how investigating the contamination comprehensively in one location can inform relevant mitigation strategies that can be transferred globally. We examine the San Francisco Bay in California, USA—the largest estuary on the West Coast of the Americas, and home to over 7 million people. The local contamination of microplastics in surface water, sediments, and fish from this urban bay is reportedly higher than many places studied to date.(1) This example demonstrates the value of local monitoring in identifying sources, informing local mitigation strategies and developing an array of solutions to stem the multifaceted tide of plastic pollution entering our global oceans.