Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 5 results:
Filters: Author is Scott Dusterhoff  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
 (8.39 MB)
Dusterhoff, S. D.; Doehring, C.; Shusterman, G. 2014. How Creeks Meet the Bay: Changing Interfaces (Interactive web map).

San Francisco Bay’s connections to local creeks are integral to its health. These fluvial-tidal (F-T) interfaces are the points of delivery for freshwater, sediment, contaminants, and nutrients. The ways in which the F-T interface has changed affect flooding dynamics, ecosystem functioning, and resilience to a changing climate. As the historical baylands have been altered, the majority of contemporary F-T interface types have changed leading to additional F-T interface types within the present-day landscape. Illustrations of each F-T interface type and methods for classification are available here

This project is part of Flood Control 2.0. For further information please visit this project page

 (3.81 MB)
Dusterhoff, S. D.; Doehring, C.; Baumgarten, S.; Grossinger, R. M.; Askevold, R. A. 2016. Resilient Landscape Vision for Lower Walnut Creek: Baseline Information and Management Strategies. Flood Control 2.0. An SFEI-ASC Resilient Landscape Program report developed in cooperation with the Flood Control 2.0 Regional Science Advisors and Contra Costa County Flood Control and Water Conservation District. SFEI Contribution No. 782. San Francisco Estuary Institute-Aquatic Science Center: Richmond, CA.

Lower Walnut Creek (Contra Costa County, CA) and its surrounding landscape have undergone considerable land reclamation and development since the mid-nineteenth century. In 1965, the lower 22 miles of Walnut Creek and the lower reaches of major tributaries were converted to flood control channels to protect the surrounding developed land. In the recent past, sediment was periodically removed from the lower Walnut Creek Flood Control Channel to provide flow capacity and necessary flood protection. Due to the wildlife impacts and costs associated with this practice, the Contra Costa County Flood Control and Water Conservation District (District) is now seeking a new channel management approach that works with natural processes and benefits people and wildlife in a cost-effective manner. Flood Control 2.0 project scientists and a Regional Science Advisory Team (RSAT) worked with the District to develop a long-term management Vision for lower Walnut Creek that could result in a multi-benefit landscape that restores lost habitat and is resilient under a changing climate.

 (17.42 MB) (44.8 MB)
Dusterhoff, S.; Pearce, S.; McKee, L. J. .; Doehring, C.; Beagle, J.; McKnight, K.; Grossinger, R.; Askevold, R. A. 2017. Changing Channels: Regional Information for Developing Multi-benefit Flood Control Channels at the Bay Interface. Flood Control 2.0. SFEI Contribution No. 801. San Francisco Estuary Institute: Richmond, CA.

Over the past 200 years, many of the channels that drain to San Francisco Bay have been modified for land reclamation and flood management. The local agencies that oversee these channels are seeking new management approaches that provide multiple benefits and promote landscape resilience. This includes channel redesign to improve natural sediment transport to downstream bayland habitats and beneficial re-use of dredged sediment for building and sustaining baylands as sea level continues to rise under a changing climate. Flood Control 2.0 is a regional project that was created to help develop innovative approaches for integrating habitat improvement and resilience into flood risk management at the Bay interface. Through a series of technical, economic, and regulatory analyses, the project addresses some of the major elements associated with multi-benefit channel design and management at the Bay interface and provides critical information that can be used by the management and restoration communities to develop long-term solutions that benefit people and wildlife.

This Flood Control 2.0 report provides a regional analysis of morphologic change and sediment dynamics in flood control channels at the Bay interface, and multi-benefit management concepts aimed at bringing habitat restoration into flood risk management. The findings presented here are built on a synthesis of historical and contemporary data that included input from Flood Control 2.0 project scientists, project partners, and science advisors. The results and recommendations, summarized below, will help operationalize many of the recommendations put forth in the Baylands Ecosystem Habitat Goals Science Update (Goals Project 2015) and support better alignment of management and restoration communities on multi-benefit bayland management approaches.

 (62.69 MB) (23.02 MB)