Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 1847 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Davis, J. 2023. 2023 RMP Update. SFEI Contribution No. 1148. San Francisco Estuary Institute: Richmond, CA.

The overarching goal of the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) is to answer the highest priority scientific questions faced by managers of Bay water quality. The RMP is an innovative collaboration between the San Francisco Bay Regional Water Quality Control Board, the regulated discharger community, the San Francisco Estuary Institute, and many other scientists and interested parties. The purpose of this document is to provide a concise overview of recent RMP activities and findings, and a look ahead to significant products anticipated in the next two years. The report includes:

  • a brief summary of some of the most noteworthy findings of this multifaceted Program;
  • a description of the management context that guides the Program; and
  • a summary of progress to date and future plans for addressing priority water quality topics.
 (37.75 MB)
Davis, J. A. 2004. The Long-Term Fate of PCBs in San Francisco Bay. Environmental Toxicology and Chemistry 23, 2396-2409.
 (1.04 MB)
 (1.49 MB)
 (588.8 KB)
Davis, J. A. 2014. 2014 Regional Monitoring Program Update. SFEI Contribution No. 728. San Francisco Estuary Institute: Richmond, CA.
 (14.23 MB)
Davis, J.; Buzby, N. 2021. PCBs in Shiner Surfperch in Priority Margin Areas of San Francisco Bay. SFEI Contribution No. 1054.

Conceptual models developed for selected San Francisco Bay margin areas (referred to as priority margin units, or PMUs) have identified shiner surfperch as a crucial indicator of PCB impairment, due to their explicit inclusion as an indicator species in the PCBs TMDL, importance as a popular sport fish species, tendency to accumulate high PCB concentrations, site fidelity, and other factors. The conceptual models recommend periodic monitoring of shiner surfperch to track trends in the PMUs, and as the ultimate indicator of progress in reduction of impairment. The objectives of this study were to 1) establish baselines for long-term monitoring of PCB concentrations in shiner surfperch in four PMUs, and 2) understand local spatial variation in shiner PCB concentrations to support optimization of the long-term sampling design. This study also provided valuable information on the presence of shiner surfperch and other species in the PMUs. 

 (7.81 MB)
Davis, J. A. 2005. Regional Monitoring Program for Trace Substances in the San Francisco Estuary 2005 Program Plan. SFEI Contribution No. 389. San Francisco Estuary Institute: Oakland. p 16.
 (122.62 KB)
 (1.89 MB)
Davis, J.; Foley, M.; Askevold, R. A.; Sutton, R.; Senn, D.; Plane, E. 2022. 2022 Pulse of the Bay. SFEI Contribution No. 1095. San Francisco Estuary Institute: Richmond, California.

The theme of the 2022 Pulse is "50 Years After the Clean Water Act." Nine different individuals or groups have contributed perspectives on progress to date and challenges ahead. This Pulse also includes summaries, from a historical perspective, on the major water quality parameters of concern in the Bay.   

 (5.57 MB) (63.26 MB)
 (29.4 MB) (5.98 MB) (197.15 KB) (124.98 KB) (193.59 KB) (718.39 KB) (221.35 KB)
 (16.95 MB)
 (5.3 MB)
 (3.03 MB)
 (2.31 MB)
 (485.96 KB)
 (8.9 MB)
Davis, J. A.; McKinney, M.; Mok, M.; Stoelting, M.; Wainwright, S. E.; May, M. D.; Petreas, M.; Roberts, C.; Taberski, K.; Tjeerdema, R. S.; et al. 1999. Contaminants Concentrations in Fish from San Francisco Bay, 1997. SFEI Contribution No. 35. San Francisco Estuary Institute, Richmond, CA, Moss Landing Marine Laboratories, Moss Landing, CA, Hazardous Materials Laboratory, Cal/EPA, Berkeley, CA, Institute of Marine Sciences, University of California, Santa Cruz, CA, San Francisco Bay Regional Wa: Richmond, CA.
 (485.96 KB)
 (1.56 MB)
 (1.08 MB)
Davis, J.; Foley, M.; Askevold, R.; Buzby, N.; Chelsky, A.; Dusterhoff, S.; Gilbreath, A.; Lin, D.; Miller, E.; Senn, D.; et al. 2020. RMP Update 2020. SFEI Contribution No. 1008.

The overarching goal of the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) is to answer the highest priority scientific questions faced by managers of Bay water quality. The RMP is an innovative collaboration between the San Francisco Bay Regional Water Quality Control Board, the regulated discharger community, the San Francisco Estuary Institute, and many other scientists and interested parties. The purpose of this document is to provide a concise overview of recent RMP activities and findings, and a look ahead to significant products anticipated in the next two years. The report includes a description of the management context that guides the Program; a brief summary of some of the most noteworthy findings of this multifaceted Program; and a summary of progress to date and future plans for addressing priority water quality topics.

 (44.92 MB)
 (2.6 MB)
 (1.25 MB)
Davis, J.; Foley, M.; Askevold, R.; Chelsky, A.; Dusterhoff, S.; Gilbreath, A.; Lin, D.; Yee, D.; Senn, D.; Sutton, R. 2021. RMP Update 2021. SFEI Contribution No. 1057.

The overarching goal of the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) is to answer the highest priority scientific questions faced by managers of Bay water quality. The RMP is an innovative collaboration between the San Francisco Bay Regional Water Quality Control Board, the regulated discharger community, the San Francisco Estuary Institute, and many other scientists and interested parties. The purpose of this document is to provide a concise overview of recent RMP activities and findings, and a look ahead to significant products anticipated in the next two years. The report includes a description of the management context that guides the Program; a brief summary of some of the most noteworthy findings of this multifaceted Program; and a summary of progress to date and future plans for addressing priority water quality topics.

 (22.73 MB)
 (239.75 KB)
 (3.08 MB)
Davis, J. A.; Gunther, A. J.; Abu-Saba, K. E. 2001. Technical Report of the Sources, Pathways, and Loadings Workgroup. SFEI Contribution No. 266. San Francisco Estuary Institute: Richmond, CA.
 (3.4 MB)
 (2.18 MB)
Davis, J. A.; SFEI. 2006. 2006 Pulse of the Estuary: Monitoring and Managing Water Quality in the San Francisco Estuary. SFEI Contribution No. 517. San Francisco Estuary Institute: Oakland, CA. p 82.
 (15.91 MB)
 (2.88 MB)
 (3.88 MB)
Davis, J. A.; Connor, M. S.; Flegal, A. R.; Conaway, C. H. 2007. Sources, transport, fate and toxicity of pollutants in the San Francisco Bay estuary. Environmental Research : A Multidisciplinary Journal of Environmental Sciences, Ecology and Public Health 105, 1-4.
 (40.59 MB)
Davis, J. A.; Heim, W. A.; Bonnema, A.; Jakl, B.; Yee, D. 2018. Mercury and Methylmercury in Fish and Water from the Sacramento-San Joaquin Delta: August 2016 – April 2017. SFEI Contribution No. 908. Aquatic Science Center: Richmond, CA.

Monitoring of sport fish and water was conducted by the Delta Regional Monitoring Program (Delta RMP) from August 2016 to April 2017 to begin to address the highest priority information needs related to implementation of the Sacramento–San Joaquin Delta Estuary Total Maximum Daily Load (TMDL) for Methylmercury (Wood et al. 2010). Two species of sport fish, largemouth bass (Micropterus salmoides) and spotted bass (Micropterus punctulatus), were collected at six sampling locations in August and September 2016. The length-adjusted (350 mm) mean methylmercury (measured as total mercury, which is a routinely used proxy for methylmercury in predator fish) concentration in bass ranged from 0.15 mg/kg or parts per million (ppm) wet weight at Little Potato Slough to 0.61 ppm at the Sacramento River at Freeport. Water samples were collected on four occasions from August 2016 through April 2017. Concentrations of methylmercury in unfiltered water ranged from 0.021 to 0.22 ng/L or parts per trillion. Concentrations of total mercury in unfiltered water ranged from 0.91 to 13 ng/L.

Over 99% of the lab results for this project met the requirements of the Delta RMP Quality Assurance Program Plan, and all data were reportable. This data report presents the methods and results for the first year of monitoring. Historic data from the same or nearby monitoring stations from 1998 to 2011 are also presented to provide context. Monitoring results for both sport fish and water were generally comparable to historic observations.

For the next several years, annual monitoring of sport fish will be conducted to firmly establish baseline concentrations and interannual variation in support of monitoring of long-term trends as an essential performance measure for the TMDL. Monitoring of water will solidify the linkage analysis (the quantitative relationship between methylmercury in water and methylmercury in sport fish) in the TMDL. Water monitoring will also provide data that will be useful in verifying patterns and trends predicted by numerical models of mercury transport and cycling being developed for the Delta and Yolo Bypass by the California Department of Water Resources (DWR).

 (4.09 MB)
Davis, J. A.; Lowe, S.; Anderson, B.; Hunt, J.; Thompson, B. 2004. Conceptual Framework and Rationale for the Exposure and Effects Pilot Study. SFEI Contribution No. 317. San Francisco Estuary Institute: Oakland.
 (634.79 KB)
 (2.73 MB)
 (228.17 KB) (409.54 KB) (646.94 KB) (215.98 KB) (32.21 MB)
 (204.03 KB)
 (2.5 MB)
 (11.99 MB)
 (395 KB)
 (3.03 MB)
 (2.56 MB)
 (119.5 KB)
Davis, J. 2018. 2018 Regional Monitoring Program Update. SFEI Contribution No. 906. San Francisco Estuary Institute : Richmond, CA.
 (30.3 MB)
 (8.62 MB) (3.88 MB) (1.2 MB)
 (1.04 MB)
Davis, J. A. 1988. Inventory of Priority Datasets Relating to the San Francisco Estuary. SFEI Contribution No. 141. San Francisco Estuary Institute: Richmond, CA. p 51.
 (104.89 KB)
 (1.88 MB)
Denslow, N.; Kroll, K.; Mehinto, A.; Maruya, K. 2018. Estrogen Receptor In Vitro Assay Linkage Studies. SFEI Contribution No. 888. San Francisco Estuary Institute : Richmond, CA.
 (1.8 MB)
 (14.2 MB)
 (314.5 KB)
Doehring, C.; Beagle, J.; Lowe, J.; Grossinger, R. M.; Salomon, M.; Kauhanen, P.; Nakata, S.; Askevold, R. A.; Bezalel, S. N. 2016. San Francisco Bay Shore Inventory: Mapping for Sea Level Rise Planning. SFEI Contribution No. 779. San Francisco Estuary Institute: Richmond, CA.

With rising sea levels and the increased likelihood of extreme weather events, it is important for regional agencies and local municipalities in the San Francisco Bay Area to have a clear understanding of the status, composition, condition, and elevation of our current Bay shore, including both natural features and built infrastructure.


The purpose of this Bay shore inventory is to create a comprehensive and consistent picture of today’s Bay shore features to inform regional planning. This dataset includes both structures engineered expressly for flood risk management (such as accredited levees) and features that affect flooding at the shore but are not designed or maintained for this purpose (such as berms, road embankments, and marshes). This mapping covers as much of the ‘real world’ influence on flooding and flood routing as possible, including the large number of non-accredited structures.
This information is needed to:

  1. identify areas vulnerable to flooding.
  2. identify adaptation constraints due to present Bay shore alignments; and
  3. suggest opportunities where beaches, wetlands, and floodplains can be maintained or restored and integrated into flood risk management strategies.

The primary focus of the project is therefore to inform regional planners and managers of Bay shore characteristics and vulnerabilities. The mapping presented here is neither to inform FEMA flood designation nor is it a replacement for site-specific analysis and design.


The mapping consists of two main elements:

  1. Mapping of Bay shore features (levees, berms, roads, railroads, embankments, etc.) which could affect flooding and flood routing.
  2. Attributing Bay shore features with additional information including elevations, armoring, ownership (when known), among others.

SFEI delineated and characterized the Bay shore inland to 3 meters (10ft) above mean higher high water (MHHW) to accommodate observed extreme water levels and the commonly used range of future sea level rise (SLR) scenarios. Elevated Bay shore features were mapped and classified as engineered levees, berms, embankments, transportation structures, wetlands, natural shoreline, channel openings, or water control structures. Mapped features were also attributed with elevation (vertical accuracy of <5cm reported in 30 meter (100ft) segments from LiDAR derived digital elevation models (DEMs), FEMA accreditation status, fortification (e.g., riprap, buttressing), frontage (e.g., whether a feature was fronted by a wetland or beach), ownership, and entity responsible for maintenance. Water control structures, ownership, and maintenance attributes were captured where data was available (not complete for entire dataset). The dataset was extensively reviewed and corrected by city, county, and natural resource agency staff in each county around the Bay. This report provides further description of the Bay shore inventory and methods used for developing the dataset. The result is a publicly accessible GIS spatial database.

 (20.33 MB)
 (5.63 MB)
Dougherty, J.; Kleckner, A.; Sutton, R.; Yee, D.; Gilbreath, A.; Trinh, M. 2024. Water Year 2024 RMP Near-Field Water Sampling and Analysis Plan. SFEI Contribution No. 1154.

This report details sampling and analysis plans associated with the pilot near-field water sampling for the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP). The RMP added a pilot effort to the  Status & Trends (S&T) Program to quantify contaminants of emerging concern (CECs) in Bay water in areas near (“near-field” of) expected loading pathways during or shortly after storm events and during the dry season. For the first year of the pilot (Water Year 2022), the near-field design included three targeted, near-field stations and four ambient Bay stations. A fourth near-field station was added in subsequent years. Samples are collected at these stations during or shortly after two storm events, and once in the dry season. The analytes being measured include bisphenols, organophosphate esters (OPEs), PFAS-target, PFAS-TOP, and a suite of stormwater CECs.

 (12.85 MB)
 (1.4 MB)
 (2.41 MB)
Dusterhoff, S.; McKnight, K.; Grenier, L.; Kauffman, N. 2021. Sediment for Survival: A Strategy for the Resilience of Bay Wetlands in the Lower San Francisco Estuary. SFEI Contribution No. 1015. San Francisco Estuary Institute: Richmond, CA.

This report analyses current data and climate projections to determine how much natural sediment may be available for tidal marshes and mudflats and how much supplemental sediment may be needed under different future scenarios. These sediment supply and demand estimates are combined with scientific knowledge of natural physical and biological processes to offer a strategy for sediment delivery that will allow these wetlands to survive a changing climate and provide benefits to people and nature for many decades to come. The approach developed in this report may also be useful beyond San Francisco Bay because shoreline protection, flood risk-management, and looming sediment deficits are common issues facing coastal communities around the world.

The resilience of San Francisco Bay shore habitats, such as tidal marshes and mudflats, is essential to all who live in the Bay Area. Tidal marshes and tidal flats (also known as mudflats) are key components of the shore habitats, collectively called baylands, which protect billions of dollars of bay-front housing and infrastructure (including neighborhoods, business parks, highways, sewage treatment plants, and landfills). They purify the Bay’s water, support endangered wildlife, nurture fisheries, and provide people access to nature within the urban environment. Bay Area residents showed their commitment to restoring these critical habitats when they voted for a property tax to pay for large-scale tidal marsh restoration. However, climate change poses a great threat, because there may not be enough natural sediment supply for tidal marshes and mudflats to gain elevation fast enough to keep pace with sea-level rise.

 (50.5 MB) (11.45 MB) (1007.15 KB)
Dusterhoff, S.; Whipple, A.; Baumgarten, S.; Robinson, A.; Shaw, S.; Stark, K.; Askevold, R. 2023. Restoration Plan for the Laguna de Santa Rosa. SFEI Contribution No. 1123. San Francisco Estuary Institute: Richmond, CA.

The Laguna de Santa Rosa is an expansive freshwater wetland complex that hosts a rich diversity of plant and wildlife species, and is also home to a thriving agricultural community. Since the mid-19th century, modifications to the Laguna and its surrounding landscape have degraded habitat conditions for both wildlife and people. Together with partners at the Laguna de Santa Rosa Foundation, and funded by Sonoma Water and the California Department of Fish and Wildlife, the goal of the Laguna de Santa Rosa Master Restoration Plan project is to develop a plan that supports ecosystem services in the Laguna—through the restoration and enhancement of landscape processes that form and sustain habitats and improve water quality—while considering flood management issues and the productivity of agricultural lands. 

The first phase of the project was the creation of the Restoration Vision for the Laguna de Santa Rosa. The report details a long-term vision for the landscape which highlights opportunities for multi-benefit habitat restoration and land management within the Laguna’s 100-year floodplain. It presents an understanding of the landscape functioning from past, present, and potential future perspectives. Starting with a picture of the historical ecology of the Laguna that details the magnitude of change in habitat conditions over the past two centuries, the document then presents an understanding of key physical processes that affect today’s Laguna. The restoration concepts described in the Vision represent a potential future Laguna, and were developed and vetted through a series of workshops in which technical advisers, management advisers, tribal representatives, and local landowners and stakeholders shared their expertise and helped shape the concepts. 

The second phase of this project was the development of a Restoration Plan for the Laguna de Santa Rosa that was built from the Vision. The Restoration Plan was developed through a collaborative process that focused on moving forward identified restoration opportunities into conceptual designs that can be used to establish implementable restoration projects. The Restoration Plan includes the following elements:

  • A restoration framework that offers a planning structure for landscape scale restoration that can be further developed and refined over time.
  • Restoration project concepts in the Laguna’s 100-year floodplain developed from selected restoration opportunity areas shown in the Vision.
  • Criteria for prioritizing and sequencing restoration project concepts.

The utilization of the Restoration Plan and the ultimate success of restoration efforts in the Laguna will require local landowner support and adequate funding to implement the restoration and manage and sustain the benefits through long-term stewardship. It will also require coordination among all the agencies responsible for managing the land and water within the Laguna and its surrounding watershed. With commitment and collaboration the Laguna

 

 (74.02 MB) (8.5 MB)
 (8.39 MB)
Dusterhoff, S. D.; Doehring, C.; Baumgarten, S.; Grossinger, R. M.; Askevold, R. A. 2016. Resilient Landscape Vision for Lower Walnut Creek: Baseline Information and Management Strategies. Flood Control 2.0. An SFEI-ASC Resilient Landscape Program report developed in cooperation with the Flood Control 2.0 Regional Science Advisors and Contra Costa County Flood Control and Water Conservation District. SFEI Contribution No. 782. San Francisco Estuary Institute-Aquatic Science Center: Richmond, CA.

Lower Walnut Creek (Contra Costa County, CA) and its surrounding landscape have undergone considerable land reclamation and development since the mid-nineteenth century. In 1965, the lower 22 miles of Walnut Creek and the lower reaches of major tributaries were converted to flood control channels to protect the surrounding developed land. In the recent past, sediment was periodically removed from the lower Walnut Creek Flood Control Channel to provide flow capacity and necessary flood protection. Due to the wildlife impacts and costs associated with this practice, the Contra Costa County Flood Control and Water Conservation District (District) is now seeking a new channel management approach that works with natural processes and benefits people and wildlife in a cost-effective manner. Flood Control 2.0 project scientists and a Regional Science Advisory Team (RSAT) worked with the District to develop a long-term management Vision for lower Walnut Creek that could result in a multi-benefit landscape that restores lost habitat and is resilient under a changing climate.

 (17.42 MB) (44.8 MB)
Dusterhoff, S.; Pearce, S.; McKee, L. J. .; Doehring, C.; Beagle, J.; McKnight, K.; Grossinger, R.; Askevold, R. A. 2017. Changing Channels: Regional Information for Developing Multi-benefit Flood Control Channels at the Bay Interface. Flood Control 2.0. SFEI Contribution No. 801. San Francisco Estuary Institute: Richmond, CA.

Over the past 200 years, many of the channels that drain to San Francisco Bay have been modified for land reclamation and flood management. The local agencies that oversee these channels are seeking new management approaches that provide multiple benefits and promote landscape resilience. This includes channel redesign to improve natural sediment transport to downstream bayland habitats and beneficial re-use of dredged sediment for building and sustaining baylands as sea level continues to rise under a changing climate. Flood Control 2.0 is a regional project that was created to help develop innovative approaches for integrating habitat improvement and resilience into flood risk management at the Bay interface. Through a series of technical, economic, and regulatory analyses, the project addresses some of the major elements associated with multi-benefit channel design and management at the Bay interface and provides critical information that can be used by the management and restoration communities to develop long-term solutions that benefit people and wildlife.

This Flood Control 2.0 report provides a regional analysis of morphologic change and sediment dynamics in flood control channels at the Bay interface, and multi-benefit management concepts aimed at bringing habitat restoration into flood risk management. The findings presented here are built on a synthesis of historical and contemporary data that included input from Flood Control 2.0 project scientists, project partners, and science advisors. The results and recommendations, summarized below, will help operationalize many of the recommendations put forth in the Baylands Ecosystem Habitat Goals Science Update (Goals Project 2015) and support better alignment of management and restoration communities on multi-benefit bayland management approaches.

 (62.69 MB) (23.02 MB)
Dusterhoff, S.; Shaw, S.; McKnight, K. 2021. Flood Control Channel Classification Scheme for the San Francisco Bay Region. Josh Collins, Ed.. San Francisco Bay Region Flood Control Channel Classification . SFEI Contribution No. 1046. San Francisco Estuary Institute: Richmond, CA.
 (11.94 MB)
 (4.06 MB)
 (3.81 MB)
Dusterhoff, S. D.; Doehring, C.; Shusterman, G. 2014. How Creeks Meet the Bay: Changing Interfaces (Interactive web map).

San Francisco Bay’s connections to local creeks are integral to its health. These fluvial-tidal (F-T) interfaces are the points of delivery for freshwater, sediment, contaminants, and nutrients. The ways in which the F-T interface has changed affect flooding dynamics, ecosystem functioning, and resilience to a changing climate. As the historical baylands have been altered, the majority of contemporary F-T interface types have changed leading to additional F-T interface types within the present-day landscape. Illustrations of each F-T interface type and methods for classification are available here

This project is part of Flood Control 2.0. For further information please visit this project page

E
 (1.87 MB)
 (648.55 KB)
 (360.98 KB)
 (1.64 MB)
Ellisor, D.; Buzby, N.; Weaver, M.; Foley, M.; Pugh, R. 2021. The San Francisco Estuary Institute Collection at the NIST Biorepository. NIST Interagency/Internal Report (NISTIR) - 8370. SFEI Contribution No. 1039. National Institute of Standards and Technology: Gaithersburg, MD.

The National Institute of Standards and Technology (NIST) has been collaborating with the San Francisco Bay Estuary Institute (SFEI) since 2009, providing biobanking services at the NIST Biorepository in Charleston, South Carolina in support of their ongoing water quality monitoring program, the Regional Monitoring Program for Water Quality in the San Francisco Bay (RMP). Specimens (bivalve tissue, bird egg contents, fish tissue and sediment) are collected and processed by SFEI-partnering institutions according to their established protocols and shipped to the NIST Biorepository for archival. This report outlines NIST's role in the project, describes collection and processing protocols developed by SFEI and their collaborators, details shipping and archival procedures employed by biorepository staff and provides an inventory of the collection maintained by NIST from 2009 to 2020.

 (1.28 MB)
 (2.4 MB) (212.26 KB) (1.55 MB)
 (47.56 MB)
San Francisco Estuary Institute. 2004. 2002 Annual Results. SFEI Contribution No. 318.
 (10.19 MB)
 (156.24 KB)
San Francisco Estuary Institute. 1998. 1996 Annual Report: San Francisco Estuary Regional Monitoring Program for Trace Substances. SFEI Contribution No. 219. San Francisco Estuary Institute: Richmond, CA.
 (5.96 MB)
 (204.03 KB)
 (330.46 KB)
 (11.24 MB)
San Francisco Estuary Institute. 1999. Report of the Pesticide Workgroup. San Francisco Estuary Institute: Richmond, CA.
 (7.98 MB)
 (178.94 KB)
 (5.1 MB)
San Francisco Estuary Institute. 1999. 1997 Annual Report: San Francisco Estuary Regional Monitoring Program for Trace Substances. SFEI Contribution No. 37. San Francisco Estuary Institute: Richmond, CA.
 (6.32 MB)
 (41.31 MB)
 (330.72 KB)