Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 48 results:
Filters: Author is Cristina Grosso  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Grosso, C.; Lowe, S.; Pearce, S.; O'Connor, K.; Teunis, L.; Stein, E. D.; Siu, J.; Scianni, M. 2023. WRAMP Training and Outreach Plan. SFEI Contribution No. 1136. p 39.

The goal of this Training and Outreach Plan is to increase the overall awareness and use  of the WRAMP datasets and tools in support of wetland resource planning,  management, and project performance tracking in California. Specifically, a near-term  goal is to develop modular training sessions that can be linked together in different  ways to customize how the datasets, monitoring methods, and online tools might be  used for different purposes. 

 (5.8 MB)
 (1.8 MB)
S
Mendez, M.; Grosso, C.; Lin, D. 2022. Summary and Evaluation of Bioaccumulation Tests for Total Polychlorinated Biphenyls (PCBs) Conducted by San Francisco Bay Dredging Projects. SFEI Contribution No. 1092. San Francisco Estuary Institute: Richmond, California.

The Dredged Material Management Office (DMMO) is responsible for annually approving dredging and disposal of millions of cubic yards of sediment to maintain safe navigation in San Francisco Bay. Dredged sediment is characterized for physical, chemical, and biological characteristics to ensure sediment disposed of in the Bay or at beneficial use locations does not cause adverse environmental impacts. Bioaccumulation thresholds and total maximum daily loads (TMDLs) have been established for several contaminant classes, including PCBs, and are used by the DMMO to determine whether sediment contaminant levels trigger subsequent bioaccumulation testing. Sediment with contaminant concentrations above any TMDL levels cannot be disposed of within the Bay but may be further evaluated for upland reuse and ocean disposal. The objective of this study was to evaluate PCB bioaccumulation data from navigational dredging projects to assess the existence of correlations between sediment chemistry and bioaccumulation test results. The motivation for this study was to determine whether the current PCB bioaccumulation trigger is effective in differentiating sediment bioaccumulation concerns. The DMMO may use the results of this study to inform evaluation requirements for PCBs, particularly in support of modifying the terms of the Long-term Management Strategy for San Francisco Bay (LTMS) programmatic Essential Fish Habitat (EFH) agreement concerning PCB bioaccumulation testing. 

 (1.73 MB)
 (5.69 MB)
Collins, J. N.; Wittner, E.; Grosso, C. 2003. South Bay Updates Modern Baylands Habitat Coverage Bay Area EcoAtlas Information System. SFEI Contribution No. 282. San Francisco Estuary Institute: Oakland, CA.
 (1.89 MB)
 (57.39 MB)
 (2.08 MB)
R
 (5.16 MB)
Trowbridge, P. R.; Davis, J. A.; Mumley, T.; Taberski, K.; Feger, N.; Valiela, L.; Ervin, J.; Arsem, N.; Olivieri, A.; Carroll, P.; et al. 2016. The Regional Monitoring Program for Water Quality in San Francisco Bay, California, USA: Science in support of managing water quality. Regional Studies in Marine Science 4.

The Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) is a novel partnership between regulatory agencies and the regulated community to provide the scientific foundation to manage water quality in the largest Pacific estuary in the Americas. The RMP monitors water quality, sediment quality and bioaccumulation of priority pollutants in fish, bivalves and birds. To improve monitoring measurements or the interpretation of data, the RMP also regularly funds special studies. The success of the RMP stems from collaborative governance, clear objectives, and long-term institutional and monetary commitments. Over the past 22 years, high quality data and special studies from the RMP have guided dozens of important decisions about Bay water quality management. Moreover, the governing structure and the collaborative nature of the RMP have created an environment that allowed it to stay relevant as new issues emerged. With diverse participation, a foundation in scientific principles and a continual commitment to adaptation, the RMP is a model water quality monitoring program. This paper describes the characteristics of the RMP that have allowed it to grow and adapt over two decades and some of the ways in which it has influenced water quality management decisions for this important ecosystem.

I
Hale, T.; Grosso, C. 2016. An Introduction to EcoAtlas: Applied Aquatic Science. San Francisco Estuary Institute: Richmond, CA. p 16 pages.

This memo was developed by SFEI to introduce the EcoAtlas tools, their intended (target) user community, and the short- and long-term intended applications. 

 (5.84 MB)
 (4.6 MB)
E
 (2.88 MB)
 (4.38 MB)
 (3.2 MB)
 (894.14 KB)
 (8.52 MB)
 (74.96 MB)
 (2.78 MB)
 (3.72 MB)
 (4 MB)
 (703.29 KB)
A
 (652.54 KB)
Hale, T.; Grosso, C. 2017. Applied Aquatic Science: A Business Plan for EcoAtlas. San Francisco Estuary Institue: Richmond, CA.

The following plan is intended to ensure the continued vitality of the toolset. The plan’s success will depend upon the continued collaboration of the public agencies that have supported the toolset thus far, but it must also integrate principles of resilience as it accounts for the tensions that arise as organizations move in different strategic directions.

 (1.69 MB) (323.4 KB) (214.45 KB)
 (1.22 MB)
2
 (6.87 MB) (4.29 MB)