Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 1888 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
U
Wheeler, M.; Stoneburner, L.; Spotswood, E.; Grossinger, R.; Barar, D.; Randisi, C. 2022. An Urban Forest Master Plan for East Palo Alto. SFEI Contribution No. 1071. San Francisco Estuary Institute: Richmond, CA.
 (65.81 MB) (10.26 MB) (3.72 MB) (79.11 KB) (91.1 KB) (2.69 MB) (95.58 KB)
 (1.75 MB)
Werbowski, L. M.; Gilbreath, A.; Munno, K.; Zhu, X.; Grbic, J.; Wu, T.; Sutton, R.; Sedlak, M.; Deshpande, A. D.; Rochman, C. M. 2021. Urban Stormwater Runoff: A Major Pathway for Anthropogenic Particles, Black Rubbery Fragments, and Other Types of Microplastics to Urban Receiving Waters. Environmental Science and Technology Water . SFEI Contribution No. 1040.

Stormwater runoff has been suggested to be a significant pathway of microplastics to aquatic habitats; yet, few studies have quantified microplastics in stormwater. Here, we quantify and characterize urban stormwater runoff from 12 watersheds surrounding San Francisco Bay for anthropogenic debris, including microplastics. Depth-integrated samples were collected during wet weather events. All stormwater runoff contained anthropogenic microparticles, including microplastics, with concentrations ranging from 1.1 to 24.6 particles/L. These concentrations are much higher than those in wastewater treatment plant effluent, suggesting urban stormwater runoff is a major source of anthropogenic debris, including microplastics, to aquatic habitats. Fibers and black rubbery fragments (potentially tire and road wear particles) were the most frequently occurring morphologies, comprising ∼85% of all particles across all samples. This suggests that mitigation strategies for stormwater should be prioritized. As a case study, we sampled stormwater from the inlet and outlet of a rain garden during three storm events to measure how effectively rain gardens capture microplastics and prevent it from contaminating aquatic ecosystems. We found that the rain garden successfully removed 96% of anthropogenic debris on average and 100% of black rubbery fragments, suggesting rain gardens should be further explored as a mitigation strategy for microplastic pollution.

 (54.84 KB)
 (1.86 MB)
 (1.04 MB)
 (1.04 MB)
 (550.7 KB)
W
Sowers, J. M.; Salomon, M. N.; Ticci, M.; Beller, E. E.; Grossinger, R. M. 2012. Watching Our Watersheds: Santa Clara Valley Past, Google Earth KMZ files: Santa Clara Valley historical points of interest, stream courses and habitats.
 (10.61 MB)
Cohen, A. N.; Gottleib, R. 1991. Water and GrowthL Restructuring the Relationship. Public Officials for Water and Environmental Reform: Sacramento, CA.
 (2.41 MB)
 (2.56 MB)
 (658.64 KB)
 (502.46 KB)
 (1.25 MB)
 (880.04 KB)
 (20.51 MB)
 (2.94 MB)
 (2.1 MB)
 (4.86 MB)
 (15.94 KB)
Lowe, S.; Pearce, S.; Collins, J. 2017. A Watershed Approach to Restoration and Mitigation Planning, Monitoring, and Assessment Based on the Wetland and Riparian Area Monitoring Plan (WRAMP): Addendum to the Upper Pajaro River Watershed Assessment 2015. SFEI Contribution No. 818. San Francisco Estuary Institute: Richmond. CA. p 30.

This report demonstrates a possible watershed-based approach to evaluating mitigation sites using the California Rapid Assessment Method (CRAM). The Santa Clara Valley Water District (Valley Water) is leading the Llagas Creek Flood Control Project in the upper Pajaro River watershed, Santa Clara County, CA. Mitigation for the Project involves enhancing riverine wetlands on-site (within the flood control channel) and restoring riverine wetlands and enhancing depressional wetlands at Lake Silveira, in the Llagas Creek watershed. Valley Water is incorporating CRAM into its planning and assessment of mitigation efforts and Valley Water's Priority D.5 Project's Pajaro River Watershed ambient stream condition survey (2015) provided the watershed context for evaluating project conditions against the general ecological conditions of streams within the watershed - employing CRAM. This WRAMP demonstration compared pre-project ecological condition assessments (employing CRAM) from the project's impact and mitigation sites to ambient watershed conditions and estimated the amount of ecological lift expected in the future as a result of the planned mitigation and restoration efforts.

 (2 MB)
 (9.82 KB)
Hoenicke, R.; Bleier, C. 2007. Watershed Management and Land Use. CCMP Implementation Committee.
 (20.09 KB)
Hoenicke, R.; Hayworth, J. 2005. A Watershed Monitoring Strategy for Napa County. SFEI Contribution No. 428. San Francisco Estuary Institute: Napa,. p 34.
 (1.14 MB)
 (983.2 KB)
 (2.22 MB)
Kleckner, A.; Sutton, R.; Yee, D.; Gilbreath, A.; Trinh, M. 2023. Water Year 2023 RMP Near-Field Water Sampling and Analysis Plan. SFEI Contribution No. 1142. San Francisco Estuary Institute: Richmond, CA.

This report details plans associated with the pilot near-field water sampling for the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP). The RMP recently reviewed the Status & Trends (S&T) Program and added a pilot effort to quantify contaminants of emerging concern (CECs) in Bay water in areas near (“near-field” of) expected loading pathways during or shortly after storm events and during the dry season. For the first year of the pilot (Water Year 2022), the near-field design included three targeted, near-field stations and four ambient Bay stations. Subsequent years added a fourth near-field station. Samples will be collected at these stations during or shortly after two storm events, and once in the dry season. The analytes that are being measured include bisphenols, organophosphate esters (OPEs), PFAS, and a suite of stormwater CECs.

 (13.36 MB)
Dougherty, J.; Kleckner, A.; Sutton, R.; Yee, D.; Gilbreath, A.; Trinh, M. 2024. Water Year 2024 RMP Near-Field Water Sampling and Analysis Plan. SFEI Contribution No. 1154.

This report details sampling and analysis plans associated with the pilot near-field water sampling for the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP). The RMP added a pilot effort to the  Status & Trends (S&T) Program to quantify contaminants of emerging concern (CECs) in Bay water in areas near (“near-field” of) expected loading pathways during or shortly after storm events and during the dry season. For the first year of the pilot (Water Year 2022), the near-field design included three targeted, near-field stations and four ambient Bay stations. A fourth near-field station was added in subsequent years. Samples are collected at these stations during or shortly after two storm events, and once in the dry season. The analytes being measured include bisphenols, organophosphate esters (OPEs), PFAS-target, PFAS-TOP, and a suite of stormwater CECs.

 (12.85 MB)
 (8.69 KB)
Cohen, A. N. 2000. Weeding the garden. In Preserving Wildlife: An International Perspective. Michael, M. A., Ed.. Preserving Wildlife: An International Perspective. Prometheus Books: Amherst NY. pp 84-92.
 (1.54 MB)
Cohen, A. N. 1992. Weeding the Garden. Atlantic Monthly 270, 76-86.
 (1.54 MB)
Lowe, S. 2019. West Valley Watershed Assessment 2018: Baseline Ecological Condition Assessment of Southwest San Francisco Bay Creeks in Santa Clara County; Calabazas, San Tomas Aquino, Saratoga, Sunnyvale East and West. Salomon, M., Pearce, S., Josh Collins, Titus, D., Eds.. SFEI Contribution No. 944. San Francisco Estuary Institute: Richmond.

This report describes baseline information about the amount and distribution of aquatic resources, and evaluates the overall ecological conditions of streams using the California Rapid Assessment Method (CRAM), for the West Valley watershed in Santa Clara County; consisting of Sunnyvale East and West Channels, Calabazas Creek, San Tomas Aquino and Saratoga creeks, and many smaller tributaries.

 (5.02 MB)
 (13.65 MB)
 (3.45 MB)
Stein, E. D.; Cayce, K.; Salomon, M. N.; Bram, D. L.; De Mello, D.; Grossinger, R. M.; Dark, S. 2014. Wetlands of the Southern California Coast: Historical Extent and Change Over Time. SFEI Contribution No. 720. Southern California Coastal watershed Research Project (SCCWRP), San Francisco Estuary Institute (SFEI), CSU Northridge Center for Geographical Studies: Costa Mesa, Richmond, Northridge.
 (5.96 MB)
 (2.91 MB)
 (330.46 KB)
 (8.99 KB)
 (7.58 KB)
 (8.99 KB)
 (2.67 MB)
Iknayan, K.; Wheeler, M.; Safran, S. M.; Young, J. S.; Spotswood, E. 2021. What makes urban parks good for California quail? Evaluating park suitability, species persistence, and the potential for reintroduction into a large urban national park. Journal of Applied Ecology.

  1. Preserving and restoring wildlife in urban areas benefits both urban ecosystems and the well-being of urban residents. While urban wildlife conservation is a rapidly developing field, the majority of conservation research has been performed in wildland areas. Understanding the applicability of wildland science to urban populations and the relative importance of factors limiting species persistence are of critical importance to identifying prescriptive management strategies for restoring wildlife to urban parks.
  2. We evaluated how habitat fragmentation, habitat quality and mortality threats influence species occupancy and persistence in urban parks. We chose California quail Callipepla californica as a representative species with potential to respond to urban conservation. We used publicly available eBird data to construct occupancy models of quail in urban parks across their native range, and present an application using focal parks interested in exploring quail reintroduction.
  3. Urban parks had a 0.23 ± 0.02 probability of quail occupancy, with greater occupancy in larger parks that were less isolated from potential source populations, had higher shrub cover and had lower impervious cover. Less isolated parks had higher colonization rates, while larger parks had lower extinction rates. These results align with findings across urban ecology showing greater biodiversity in larger and more highly connected habitat patches.
  4. A case study highlighted that interventions to increase effective park size and improve connectivity would be most influential for two highly urban focal parks, while changes to internal land cover would have a relatively small impact. Low joint extinction probability in the parks (0.010 ± 0.013) indicated reintroduced populations could persist for some time.
  5. Synthesis and applications. We show how eBird data can be harnessed to evaluate the responsiveness of wildlife to urban parks of variable size, connectivity and habitat quality, highlighting what management actions are most needed. Using California quail as an example, we found park size, park isolation and presence of coyotes are all important drivers of whether quail can colonize and persist in parks. Our results suggest reintroducing quail to parks could be successful provided parks are large enough to support quail, and management actions are taken to enhance regional connectivity or periodic assisted colonization is used to supplement local populations.
 (2.33 MB)
 (24.29 MB)
Mayer, P.; Moran, K.; Miller, E.; Brander, S.; Harper, S.; Garcia-Jaramillo, M.; Carrasco-Navarro, V.; Ho, K. T.; Burgess, R. M.; Hampton, L. M. Thornto; et al. 2024. Where the rubber meets the road: Emerging environmental impacts of tire wear particles and their chemical cocktails. Science of the Total Environment 927.

About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.

 (4.66 MB)
 (8.26 MB)
 (13.76 MB)
 (704.21 KB)
 (31.51 MB) (98.29 MB) (2.11 MB) (16.39 MB) (107 MB) (3.19 MB) (14.02 MB)
Panlasigui, S.; Pearce, S.; Hegstad, R.; Quinn, M.; Whipple, A. 2020. Wildlife Habitat and Water Quality Enhancement Opportunities at Castlewood Country Club. SFEI Contribution No. 1003. San Francisco Estuary Institute: Richmond, CA.

Meeting human and ecological needs within San Francisco Bay’s watersheds is increasingly challenged by flooding, water quality degradation, and habitat loss, exacerbated by intensified urbanization and climate change. Addressing these challenges requires implementing multi-benefit strategies through new partnerships and increased coordination across the region’s diverse landscapes. Actions to improve water quality and enhance habitat for biodiversity in our highly developed and managed landscapes can help the region as a whole to build resilience to withstand current pressures and future change. The EPA-funded project, “Preparing for the Storm,” aims to address these challenges at the site- and landscape-scale through studies and implementation projects in the Livermore-Amador Valley. As part of this larger project, this technical report presents a synthesis of water quality and habitat improvement opportunities for a golf course of Castlewood Country Club.

 (52.69 MB) (2.68 MB)
 (47.14 KB)
King, A. 2019. Wind Over San Francisco Bay and the Sacramento-San Joaquin River Delta: Forcing for Hydrodynamic Models. SFEI Contribution No. 937. San Francisco Estuary Institute: Richmond, CA.
 (9.17 MB)
 (1.8 MB)
 (6.43 MB)
 (11.38 MB)
Grosso, C.; Lowe, S.; Pearce, S.; O'Connor, K.; Teunis, L.; Stein, E. D.; Siu, J.; Scianni, M. 2023. WRAMP Training and Outreach Plan. SFEI Contribution No. 1136. p 39.

The goal of this Training and Outreach Plan is to increase the overall awareness and use  of the WRAMP datasets and tools in support of wetland resource planning,  management, and project performance tracking in California. Specifically, a near-term  goal is to develop modular training sessions that can be linked together in different  ways to customize how the datasets, monitoring methods, and online tools might be  used for different purposes. 

 (5.8 MB)
 (35.93 MB)
Williams, M.; Cayce, K. 2009. WRMP Factsheet — Wetland and Riparian Base Map. San Francisco Estuary Institute: Oakland, Ca.
 (1.25 MB)
Y
Cohen, A. N.; Nordby, J. C. 2005. Year-end Report to the National Science Foundation. SFEI Contribution No. 456. San Francisco Estuary Institute: Oakland, CA.
 (36.84 KB)
Z
Cohen, A. N.; Weinstein, A. 2001. Zebra Mussel's Calcium Threshold and Implications for its Potential Distribution in North America. SFEI Contribution No. 356. San Francisco Estuary Institute: Richmond CA.
 (386.77 KB)
Cohen, A. N. 2008. Zebra & quagga mussel invasions in the western US. International Association of Great Lakes Research (IAGLR).