Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 1869 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Whipple, A.; Grossinger, R. M.; Davis, F. W. 2010. Shifting Baselines in a California Oak Savanna: Nineteenth Century Data to Inform Restoration Scenarios. Restoration Ecology 19 (101), 88-101 . SFEI Contribution No. 593.

For centuries humans have reduced and transformed Mediterranean-climate oak woodland and savanna ecosystems, making it difficult to establish credible baselines for ecosystem structure and composition that can guide ecological restoration efforts. We combined historical data sources, with particular attention to mid-1800s General Land Office witness tree records and maps and twentieth century air photos, to reconstruct 150 years of decline in extent and stand density of Valley oak (Quercus lobata Neé) woodlands and savannas in the Santa Clara Valley of central coastal California. Nineteenth century Valley oak woodlands here were far more extensive and densely stocked than early twentieth century air photos would suggest, although reconstructed basal areas (7.5 m2/ha) and densities (48.9 trees/ha) were not outside the modern range reported for this ecosystem type. Tree densities and size distribution varied across the landscape in relation to soil and topography, and trees in open savannas were systematically larger than those in denser woodlands. For the largest woodland stand, we estimated a 99% decline in population from the mid-1800s to the 1930s. Although most of the study area is now intensely developed, Valley oaks could be reintroduced in urban and residential areas as well as in surrounding rangelands at densities comparable to the native oak woodlands and savannas, thereby restoring aspects of ecologically and culturally significant ecosystems, including wildlife habitat and genetic connectivity within the landscape.

Beagle, J.; Salomon, M.; Grossinger, R. M.; Baumgarten, S.; Askevold, R. A. 2015. Shifting Shores: Marsh Expansion and Retreat in San Pablo Bay. SFEI Contribution No. 751.

EXECUTIVE SUMMARY
As sea level rise accelerates, our shores will be increasingly vulnerable to erosion. Particular concern centers around the potential loss of San Francisco Bay’s much-valued tidal marshes, which provide natural flood protection to our shorelines, habitat for native wildlife, and many other ecosystem services. Addressing this concern, this study is the first systematic analysis of the rates of marsh retreat and expansion over time for San Pablo Bay, located in the northern part of San Francisco Bay.

Key findings:
• Over the past two decades, more of the marshes in San Pablo Bay have expanded (35% by length) than retreated (6%).
• Some areas have been expanding for over 150 years.
• Some marsh edges that appear to be retreating are in fact expanding rapidly at rates of up to 8 m/yr.
• Marsh edge change may be a useful indicator of resilience, identifying favorable sites for marsh persistence.
• These data can provide a foundation for understanding drivers of marsh edge expansion and retreat such as wind direction, wave energy, watershed sediment supply, and mudflat shape.
• This understanding of system dynamics will help inform management decisions about marsh restoration and protection.
• This study provides a baseline and method for tracking marsh edge response to current and future conditions, particularly anticipated changes in sea level, wave energy, and sediment supply.


Recommended next steps:
• This pilot study for San Pablo Bay marshes should be extended to other marshes in San Francisco Bay.
• These initial marsh expansion and retreat findings should be further analyzed and interpreted to improve our understanding of system drivers and identify management responses.
• A program for repeated assessment should be developed to identify and track changes in shoreline position, a leading indicator of the likelihood marsh survival.

 (93.2 MB) (31.73 MB)
 (519.38 KB)
Flegal, A. R.; Sanudo-Wilhelmy, S. A.; Rivera-Duarte, I. 1996. Silver contamination in aquatic environments. Reviews of Environmental Contamination and Toxicology 148, 139-162 . SFEI Contribution No. 192.
Flegal, A. R.; Smith, G. J. 1993. Silver in San Francisco Bay estuarine waters. Estuaries 16, 547-558 . SFEI Contribution No. 175.
Greenfield, B. K.; Davis, J. A. 2004. A Simple Mass Balance Model for PAH Fate in the San Francisco Estuary. SFEI Contribution No. 115. San Francisco Estuary Institute: Oakland, CA.
 (604.4 KB)
 (902.89 KB)
 (8.39 MB)
 (969.52 KB)
 (2.31 MB)
 (1.48 MB)
Mckee, L.; Gilbreath, A.; Sabin, L. 2022. Small Tributaries Pollutants of Concern Reconnaissance Monitoring: Application of Storm-event Loads and Yields-Based and Congener-Based PCB Site Prioritization Methodologies. SFEI Contribution No. 1067.

Stormwater agencies in the San Francisco Bay Area are identifying watershed areas that are polluted with PCBs in order to prioritize management efforts to reduce impairment in the Bay caused by PCBs carried in stormwater. Water sampling during storms has been used to characterize PCB concentrations but management prioritization based on the comparison of concentrations between watersheds is made difficult due to variations in flow and sediment erosion between storms and in relation to varying land use. In addition, identifying PCB source areas within priority watersheds has proven complex and costly. To address these challenges, the San Francisco Bay Regional Monitoring Program (RMP) has developed two new interpretive methods based on storm-event PCB yields (PCBs mass per unit area per unit time) and fingerprints of Aroclors (commercial PCB mixtures) that make existing data more useful for decision-making. 

The objectives of this study were to: 

  • Apply the yield method to the regional stormwater dataset and provide new rankings, 
  • Estimate the presence of Aroclors in samples where congener data are available
  • Evaluate data weaknesses and recommend watersheds to resample, and
  • Classify watersheds into high, medium, and low categories for potential management.
 (4.33 MB) (1.24 MB) (989.4 KB) (1.83 MB)
Sonoma Land Trust and partners. 2020. Sonoma Creek Baylands Strategy. Prepared by Sonoma Land Trust, San Francisco Estuary Institute, Point Blue Conservation Science, Environmental Science Associates, Ducks Unlimited, U.S. Fish and Wildlife Service.
 (5.12 MB) (18.47 MB)
Grossinger, R. M.; Dawson, A. 2002. Sonoma Valley Historical Ecology Project, Phase 1 Final Report. SFEI Contribution No. 254. Sonoma County Water Agency and the SF Estuary Project. p 8 pp. plus apps.
 (31.29 KB)
McKee, L. J. . 2005. Sources, Pathways, and Loadings: 5-Year Work Plan (2005-2009). SFEI Contribution No. 406. San Francisco Estuary Institute. p 25.
 (4.19 MB)
 (184.57 KB) (282.92 KB) (2.84 MB) (1.06 MB) (816.18 KB) (343.39 KB) (221.26 KB) (2.53 MB) (1.32 MB) (1.21 MB) (1.25 MB) (598.85 KB)
 (3.93 MB)
Oram, J. J.; McKee, L. J. .; Davis, J. A.; Sedlak, M.; Yee, D. 2008. Sources, Pathways and Loadings Workgroup: Five-Year Workplan (2008-12). SFEI Contribution No. 567. San Francisco Estuary Institute: Oakland.
Davis, J. A.; Connor, M. S.; Flegal, A. R.; Conaway, C. H. 2007. Sources, transport, fate and toxicity of pollutants in the San Francisco Bay estuary. Environmental Research : A Multidisciplinary Journal of Environmental Sciences, Ecology and Public Health 105, 1-4.
 (40.59 MB)
 (25.49 KB)
 (204.03 KB)
 (3.64 MB)
 (204.03 KB)
Collins, J. N.; Wittner, E.; Grosso, C. 2003. South Bay Updates Modern Baylands Habitat Coverage Bay Area EcoAtlas Information System. SFEI Contribution No. 282. San Francisco Estuary Institute: Oakland, CA.
 (26.39 MB) (6.81 MB) (14.42 MB) (20.34 MB) (51.26 MB) (42.1 MB) (33.12 MB) (63.69 MB)
Greenfield, B. K. 2008. Spatial and temporal patterns in food web accumulation of Hg. San Francisco Bay Mercury Coordination Meeting.
Abu-Saba, K. E. 1998. Spatial and Temporal Variability in the Aquatic Cycling of Chromium. SFEI Contribution No. 220. University of California: Santa Cruz, CA.
 (1014.85 KB)
 (924.37 KB)
 (16.66 MB)
McKnight, K.; Lowe, J.; Plane, E. 2020. Special Study on Bulk Density. SFEI Contribution No. 975. San Francisco Estuary Institute: Richmond, CA. p 43.

Sediment bulk density is the total mass of mineral and organic sediment within a defined volume. It is a key variable in many research questions pertaining to Bay sediment studies but one that is often poorly quantified and can be misinterpreted. The motivation for this report comes from a recommendation by Schoellhamer et al. (2018) to compile more accurate estimates of bulk density of Bay sediments to convert between volume and mass with a higher level of certainty. Through funding and guidance from the Bay Regional Monitoring Program Sediment Work Group, this report is a first step towards compiling the available data on sediment bulk densities across Bay habitats and along salinity gradients to provide better information for resource managers and others working on sediment-related issues. This report discusses the need to know the bulk density of Bay soils to convert between sediment mass and soil volume; clarifies general definitions and common points of confusion related to sediment bulk density; compiles primary sources of bulk density measurements, secondary sources of bulk density estimates, and standard engineering estimates of bulk density for different habitats in San Francisco Bay; and, provides a database where practitioners can track, analyze, and share bulk density measurements.
 

 (4.06 MB)
Grossinger, R. M.; Wheeler, M.; Spotswood, E.; Ndayishimiye, E.; Carbone, G.; Galt, R. 2020. Sports and urban biodiversity. . SFEI Contribution No. 1028.

SFEI collaborated with the International Union for the Conservation of Nature (IUCN) and the International Olympic Committee (IOC) to create a guide to incorporating nature into urban sports, from the development of Olympic cities to the design and management of the many sport fields throughout the urban landscape. We applied the Urban Biodiversity Framework developed in Making Nature’s City to the world of sports, with case studies drawn from international sport federations, Olympic cities, and individual sport teams and venues around the world. The guide is part of IUCN’s ongoing collaboration with IOC to develop best practices around biodiversity for the sporting industry.

Download the report

 (2.7 MB)
Connor, M. S.; Davis, J. A. 2008. The State of San Francisco Bay: Water Quality. National Water Quality Monitoring Conference.
 (2.27 MB)
 (2.27 MB)
 (76.3 KB)
 (10.47 MB)
Lowe, S.; Josh Collins; Pearce, S. 2013. Statistical Design, Analysis, and Graphics for the Guadalupe River Watershed Assessment 2012. SFEI Contribution No. 687. San Francisco Estuary Institute: Richmond, CA.
 (4.88 MB)
 (1.76 MB)
O'Connor, J. M.; Daum, T. H. 1992. Status and Assessment of Selected Monitoring Programs in the San Francisco Esturary. SFEI Contribution No. 172. San Francisco Estuary Institute: Richmond, Ca. p 128.
 (16.95 MB)
Cohen, A. N. 1999. Status of invasions and policy response on the U. S. west coast. First National Conference on Marine Bioinvasions.
Trowbridge, P. 2018. Status & Trends Monitoring Design: 2018 Update. San Francisco Estuary Institute : Richmond, CA.
 (1.13 MB)
Zi, T. 2023. Stevens Creek Reservoir – Forecast Informed Reservoir Operation (FIRO) Phase One Report. Peterson, D., Stark, K., Eds.. SFEI Contribution No. 1120. Prepared for SCV Water District.
 (5.21 MB)
Cohen, A. N. 1996. Stopping ballast water invaders. Native Species Network 1, 1.
Cohen, A. N. 1994. Storming the Bay. Terrain 24, 4,7.
Jones, C.; Davis, J.; Yee, D. 2022. Strategy for In-Bay Fate Modeling to Support Contaminant and Sediment Management in San Francisco Bay. SFEI Contribution No. 1090. San Francisco Estuary Institute: Richmond, California.

This report presents a strategy and multi-year workplan for modeling polychlorinated biphenyls (PCBs), contaminants of emerging concern (CECs), and sediment in San Francisco Bay (the Bay). Robust in-Bay fate modeling is needed to address priority management questions that have been identified for these constituents.

The strategy for in-Bay modeling presented in this report is a major element of a broader, integrated strategy that is being developed across RMP Workgroups for modeling contaminants flowing from the Bay watersheds and other pathways into the Bay. The broader project is expected to yield an integrated strategy in 2022, followed by implementation of a pilot effort in 2023. Coordination of the in-Bay modeling effort with the broader integrated strategy and other modeling work (e.g., nutrient modeling under the Nutrient Management Strategy) will be critical to optimizing use of the funds allocated to modeling.

 (2.81 MB)
 (5.69 MB)
 (29.72 MB)
 (2.7 MB)
Logan, J. B.; Winklerprins, L. T.; Lacy, J. R. 2023. Structure-from-motion derived orthomosaic imagery and digital surface models (DSMs) from the intertidal region at Whale's Tail Marsh, South San Francisco Bay, CA. United States Geological Survey: South San Francisco Bay, CA.

This data release presents digital surface models (DSMs) and orthomosaic images of the Whale's Tail Marsh region of South San Francisco Bay, CA. The data were created using structure-from-motion (SfM) processing of repeat aerial imagery collected from fixed-wing aircraft. The raw images were acquired from an approximate altitude of 427 meters (1,400 feet) above ground level (AGL), using a Hasselblad A6D-100c camera fitted with an HC 80 lens, resulting in a nominal ground-sample-distance (GSD) of 2.5 centimeters per pixel. The acquisition flight lines were designed to provide approximately 50 percent overlap between adjacent flight lines (sidelap), with approximately 70 percent overlap between sequential images along the flight line (forelap). Survey control was established using an onboard camera-synchronized dual-frequency GPS system as well as ground control points (GCPs) distributed throughout the survey area and measured using survey-grade post-processed kinematic (PPK) GPS. Both the data from the onboard GPS and from the GPS used to measure the GCPs were post-processed using a nearby Continuously Operating Reference Station (CORS) operated by the National Geodetic Survey (NGS). Structure-from-motion processing of these data was conducted using a "4D" processing workflow in which imagery from each of the different acquisition dates were co-aligned to increase relative spatial precision between the final data products.

Mendez, M.; Lin, D.; Sutton, R. 2021. Study of Per- and Polyfluoroalkyl Substances in Bay Area POTWs: Phase 1, Sampling and Analysis Plan. SFEI Contribution No. 1020. San Francisco Estuary Institute: Richmond, CA.
 (12.68 MB)
 (6.27 MB)
Cohen, A. N. 1988. Subsides in the Central Utah Project: Whose CUP is Running over?. Report for the Natural Resources Defense Council: San Francisco, CA.
Cohen, A. N. 2001. Success factors in human-dispersed organisms. Dispersal, Annual Symposium of the British Ecological Society, Page 8.
Cohen, A. N. 2001. Success factors in human-dispersed organisms. Page 8 in:. University of Reading, UK. British Ecological Society, London. p p. 8.
Cohen, A. N. 2002. Success factors in the establishment of human-dispersed organisms. In Dispersal Ecology: The 42nd Symposium of the British Ecological Society, held at the University of Reading, 2-5 April 2001. Bullock, J. M., Kenward, R. E., Hails, R. S., Eds.. Dispersal Ecology: The 42nd Symposium of the British Ecological Society, held at the University of Reading, 2-5 April 2001. British Ecological Society and Blackwell Publishing: Oxford UK. pp 374-394.
 (294.86 KB)
Senn, D. B.; Novick, E. 2014. Suisun Bay Ammonium Synthesis. SFEI Contribution No. 706. San Francisco Estuary Institute: Richmond, CA. p 191.
 (6.62 MB)
Mendez, M.; Grosso, C.; Lin, D. 2022. Summary and Evaluation of Bioaccumulation Tests for Total Polychlorinated Biphenyls (PCBs) Conducted by San Francisco Bay Dredging Projects. SFEI Contribution No. 1092. San Francisco Estuary Institute: Richmond, California.

The Dredged Material Management Office (DMMO) is responsible for annually approving dredging and disposal of millions of cubic yards of sediment to maintain safe navigation in San Francisco Bay. Dredged sediment is characterized for physical, chemical, and biological characteristics to ensure sediment disposed of in the Bay or at beneficial use locations does not cause adverse environmental impacts. Bioaccumulation thresholds and total maximum daily loads (TMDLs) have been established for several contaminant classes, including PCBs, and are used by the DMMO to determine whether sediment contaminant levels trigger subsequent bioaccumulation testing. Sediment with contaminant concentrations above any TMDL levels cannot be disposed of within the Bay but may be further evaluated for upland reuse and ocean disposal. The objective of this study was to evaluate PCB bioaccumulation data from navigational dredging projects to assess the existence of correlations between sediment chemistry and bioaccumulation test results. The motivation for this study was to determine whether the current PCB bioaccumulation trigger is effective in differentiating sediment bioaccumulation concerns. The DMMO may use the results of this study to inform evaluation requirements for PCBs, particularly in support of modifying the terms of the Long-term Management Strategy for San Francisco Bay (LTMS) programmatic Essential Fish Habitat (EFH) agreement concerning PCB bioaccumulation testing. 

 (1.73 MB)
 (3.74 MB) (5.45 MB) (16.05 MB) (3.03 MB) (523.1 KB)
Miller, E.; Sedlak, M.; Sutton, R.; Chang, D.; Dodder, N.; Hoh, E. 2021. Summary for Managers: Non-targeted Analysis of Stormwater Runoff following the 2017 Northern San Francisco Bay Area Wildfires. SFEI Contribution No. 1045. San Francisco Estuary Institute: Richmond, CA.

Urban-wildland interfaces in the western US are increasingly threatened by the growing number and intensity of wildfires, potentially changing the type of contaminants released into the landscape as more urban structures are burned. In October 2017, the Tubbs, Nuns, and Atlas wildfires devastated communities in Northern California (Figure 1), burning over 8,500 buildings and 210,000 acres of land in the span of 24 days (California Department of Forestry and Fire Protection 2017). Together, these wildfires were the most destructive and costliest fires in the history of California at that time (California Department of Forestry and Fire Protection 2019). 

Post-wildfire monitoring efforts in impacted watersheds typically focus on a few well-established water quality and chemistry concerns (McKee et al. 2018). Few studies go beyond these limited targeted analyses and attempt to identify the multitude of other fire-related compounds that are released from or form as the result of combustion of residential, commercial, and industrial structures in urban-wildland interfaces. Some of these unidentified compounds may be toxic to aquatic ecosystems or human health, and may pose risks to wildlife or in water bodies that act as drinking water supplies to nearby communities.  

 (727.65 KB)
 (3.39 MB)
Collins, J. N. 2002. Summary of Crissy Field Monitoring Elements. San Francisco Estuary Institute.
 (9.75 KB)
 (133.37 KB)
Buchanan, P. A.; Ganju, N. K. 2002. Summary of Suspended-Sediment Concentration Data, San Francisco Bay, California, Water Year 2000. SFEI Contribution No. 242. US Geological Survey Open-File Report. pp 96-591.
Buchanan, P. A.; Schoellhamer, D. H. 1996. Summary of Suspended-Solids Concentration Data, San Francisco Bay, California, Water Year 1995. SFEI Contribution No. 13. US Geological Survey Open-File Report. pp 96-591.
 (55.25 KB)
Pearce, S.; McKee, L. 2020. Summary of Water Year 2017 precipitation, discharge, and sediment conditions at selected locations in Arroyo de la Laguna watershed, with a focus on Arroyo Mocho. SFEI Contribution No. 912. San Francisco Estuary Institute: Richmond, CA.

This report summarizes the precipitation, discharge, and sediment conditions observed from October 1, 2016 to September 30th, 2017 (Water Year (WY) 2017) in the Arroyo de la Laguna watershed, with a focus on the Arroyo Mocho watershed. This information was collected by the Zone 7 Water Agency to support operation and maintenance of their flood control facilities. Additionally, this and similar information collected in WY 2018 and 2019 will be utilized to update the Arroyo Mocho watershed sediment budget (Pearce et al, 2020).

 (1.36 MB)
 (2.04 MB)
 (4.1 MB)
 (1.78 MB)
 (14.87 MB)
 (38.4 MB) (22.9 MB)
Lin, D.; Davis, J. 2018. Support for Sediment Bioaccumulation Evaluation: Toxicity Reference Values for the San Francisco Bay. SFEI Contribution No. 916. San Francisco Estuary Institute : Richmond, CA.
 (317.14 KB)
 (3 MB)