Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 1874 results:
Report
Cohen, A. N. 1999. Breifing Paper on a Monitoring Plan for Nonindigenous Organisms in the San Francisco Bay/Delta Estuary. A report for CALFED and the California Urban Water Agencies. San Francisco Estuary Institute. p Richmond CA.
Cohen, A. N. 1999. Briefing Paper on a Monitoring Plan for Nonindigenous Organisms in the San Francisco Bay/Delta Estuary. SFEI Contribution No. 325. San Francisco Estuary Institute: Richmond CA.
 (283.76 KB)
Sutton, R.; Kucklick, J. 2015. A Broad Scan of Bay Contaminants. San Francisco Estuary Institute: Richmond, CA.
 (1.34 MB)
Lowe, S.; Pearce, S. 2022. Building Capacity of the California Wetland Program Plan to Protect and Restore Vernal Pools. SFEI Contribution No. 1087. San Francisco Estuary Institute: Richmond. CA. p 30.

This report describes the updates to the vernal pool habitat map, the development of the ambient baseline ecological condition survey of vernal pool systems within the Central Valley, and the development and results of the habitat development curve. A fictional project example shows how CRAM and the vernal pool complex CDFs and HDCs can help project proponents and the regulatory agencies think critically about project designs (using CRAM Attributes and Metrics as a standard measure), evaluate project conditions within a regional landscape context, and monitor project performance over time to ensure that project goals are met.

Funding for this report was provided through an agreement with the U.S. Environmental Protection Agency (USEPA).  This report does not necessarily reflect the views and policies of USEPA nor does the mention of trade names or commercial products within this report constitute endorsement or recommendation for use.

 (2.07 MB)
San Francisco Estuary Institute. 2007. CALFED's Fish Mercury Project. SFEI Contribution No. 531. San Francisco Estuary Institute and CALFED.
 (21.81 MB)
 (2.45 MB) (119.95 KB) (44.53 KB) (23.92 KB)
 (14 MB)
Collins, J. N. 2003. California Rapid Assessment Method (CRAM) - Part 2. SFEI Contribution No. 285. San Francisco Estuary Institute.
 (2.79 MB)
Collins, J. N.; Sutula, M.; Stein, E.; Jones, P. 2002. California Rapid Assessment Method for Wetlands v. 1.0. SFEI Contribution No. 246. San Francisco Estuary Institute. p 18.
 (1.5 MB)
Moore, S.; Hale, T.; Weisberg, S. B.; Flores, L.; Kauhanen, P. 2021. California Trash Monitoring Methods and Assessments Playbook. SFEI Contribution No. 1025. San Francisco Estuary Institute: Richmond, Calif.

As municipalities and water-quality regulatory agencies have implemented programs and policies to improve management of the trash loading to storm drain conveyances, there has been increased interest in using a common set of methods to quantify the effectiveness of management actions. To create a foundation for developing a consistent, standardized approach to trash monitoring statewide, the project team performed a method comparison analysis, based on two seasons of fieldwork. This analysis facilitated the assessment of the accuracy, repeatability, and efficiency of some already developed trash monitoring methodologies already in use, as well as help to investigate a new, innovative method (cf. Fielding Testing Report on trashmonitoring.org). Methods developed by the Bay Area Stormwater Management Agencies Association (BASMAA) for use in the San Francisco Bay Area were compared to methods developed by the Southern California Stormwater Monitoring Coalition (SMC) for use in coastal southern California. One of the chief goals of these comparisons was to understand the similarities and differences between the already existing methods for detecting, quantifying, and characterizing trash in selected environments. Readers will find that the data bear out remarkable levels of accuracy and precision with quantitative metrics that help to align methods and management concerns. Furthermore, the degree of correlation among tested methods were especially high, offering greater opportunities for inter-method comparisons.


The findings of this project are intended for use by public agencies, non-profit organizations, private consultants, and all of their various partners in informing a statewide effort to adopt rigorous, standardized monitoring methods to support the State Water Board’s Trash Amendments. Over the next couple of decades, such public mandates will require all water bodies in California to achieve water quality objectives for trash.

 (299.99 MB)
 (2.98 MB)
 (281.31 KB)
 (2.44 MB)
 (816.97 KB)
 (1.35 MB)
Cohen, A. N. 2001. Case Study 2.5: Petition for U.S. federal action on the green seaweed Caulerpa taxifolia. Wittenberg, R., Cock, M. J. W., Eds.. United Nations Global Invasive Species Program. CAB International, Wallingford, Oxon, UK. p 31.
Cohen, A. N. 2001. Case Study 3.16: Transfer of pathogens and other species via oyster culture. Wittenberg, R., Cock, M. J. W., Eds.. United Nations Global Invasive Species Program. CAB International: Wallingford, Oxon, UK. p p 92.
Yee, D.; Franz, A. 2005. Castro Valley Atmospheric Deposition Study. SFEI Contribution No. 430. Brake Pad Partnership.
 (2.61 MB)
Sutton, R.; Lin, D. 2022. CECs in California’s Ambient Aquatic Ecosystems: Occurrence and Risk Screening of Key Classes. Miller, E., Wong, A., Mendez, M., Eds.. ASC Contribution. SFEI Contribution No. 1066. Aquatic Science Center: Richmond, CA.
 (1.01 MB) (441.1 KB)
 (651.3 KB) (1.59 MB)
Dusterhoff, S.; Pearce, S.; McKee, L. J. .; Doehring, C.; Beagle, J.; McKnight, K.; Grossinger, R.; Askevold, R. A. 2017. Changing Channels: Regional Information for Developing Multi-benefit Flood Control Channels at the Bay Interface. Flood Control 2.0. SFEI Contribution No. 801. San Francisco Estuary Institute: Richmond, CA.

Over the past 200 years, many of the channels that drain to San Francisco Bay have been modified for land reclamation and flood management. The local agencies that oversee these channels are seeking new management approaches that provide multiple benefits and promote landscape resilience. This includes channel redesign to improve natural sediment transport to downstream bayland habitats and beneficial re-use of dredged sediment for building and sustaining baylands as sea level continues to rise under a changing climate. Flood Control 2.0 is a regional project that was created to help develop innovative approaches for integrating habitat improvement and resilience into flood risk management at the Bay interface. Through a series of technical, economic, and regulatory analyses, the project addresses some of the major elements associated with multi-benefit channel design and management at the Bay interface and provides critical information that can be used by the management and restoration communities to develop long-term solutions that benefit people and wildlife.

This Flood Control 2.0 report provides a regional analysis of morphologic change and sediment dynamics in flood control channels at the Bay interface, and multi-benefit management concepts aimed at bringing habitat restoration into flood risk management. The findings presented here are built on a synthesis of historical and contemporary data that included input from Flood Control 2.0 project scientists, project partners, and science advisors. The results and recommendations, summarized below, will help operationalize many of the recommendations put forth in the Baylands Ecosystem Habitat Goals Science Update (Goals Project 2015) and support better alignment of management and restoration communities on multi-benefit bayland management approaches.

 (62.69 MB) (23.02 MB)
 (727.53 KB)
 (4.87 MB)
 (4.64 MB)
Yee, D.; Wong, A.; Shimabuku, I.; Trowbridge, P. 2017. Characterization of Sediment Contamination in Central Bay Margin Areas. SFEI Contribution No. 829. San Francisco Estuary Institute: Richmond, CA.
 (2.89 MB)
Yee, D.; Wong, A.; Buzby, N. 2019. Characterization of Sediment Contamination in South Bay Margin Areas. SFEI Contribution No. 962. San Francisco Estuary Institute: Richmond, CA.

The Bay margins (i.e., mudflats and adjacent shallow areas of the Bay) are important habitats where there is high potential for wildlife to be exposed to contaminants. However, until recently, these areas had not been routinely sampled by the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) due to logistical considerations. In 2015, the RMP conducted a spatially-distributed characterization of surface sediment contamination and ancillary characteristics within the RMP-defined Central San Francisco Bay margin areas. This was repeated in 2017 within South Bay, which for this report refers to the area collectively encompassing Upper South Bay (usually just called the “South Bay” segment in the Bay RMP, “Upper” added here to distinguish from the combined area), Lower South Bay, and “Extreme” Lower South Bay (previously named “Southern Sloughs”) margin areas.

Ambient margins data in South Bay provide a context against which the severity of contamination at specific sites can be compared. The baseline data could also be useful in setting targets and tracking improvements in watershed loads and their nearfield receiving waters, or for appropriate assessment of re-use or disposal of dredged sediment. These spatially distributed data also provide improved estimates of mean concentrations and contaminant inventories in margins. Based on data from this study, contamination in the margin areas accounts for 35% of PCB mass in the upper 15 cm of surface sediments in South Bay, which is approximately proportional to the relative area of the margin (34% of the region). In contrast, margins only contain 30% of the mercury mass in South Bay, somewhat less than their proportional area.

 (6.05 MB)
 (431.23 KB) (431.23 KB) (1.37 MB)
 (2.39 MB) (101.95 KB) (2.58 MB) (1.52 MB) (115.37 KB) (8.97 MB) (36.31 MB)
Foley, M. M.; Davis, J. A. 2022. Charter: Regional Monitoring Program for Water Quality in San Francisco Bay. SFEI Contribution No. 1184. San Francisco Estuary Institute: Richmond, CA.

This Charter describes the purpose and function of the Regional Monitoring Program for Water
Quality in San Francisco Bay (RMP). Established in 1993, the RMP is a collaborative effort
between the San Francisco Estuary Institute, the California Regional Water Quality Control
Board, San Francisco Bay Region, and the regulated discharger community.

 (890.58 KB)
Trowbridge, P.; Davis, J. A.; Wilson, R. 2015. Charter: Regional Monitoring Program for Water Quality in San Francisco Bay. SFEI Contribution No. 750. San Francisco Estuary Institute: Richmond, Calif.

The overarching goal of the RMP is to collect data and communicate information about water quality in San Francisco Bay in support of management decisions. The RMP was created in 1993 through Regional Board Resolution No. 92-043 that directed the Executive Officer to implement a Regional Monitoring Plan in collaboration with permitted dischargers pursuant to California Water Code, Sections 13267, 13383, 13268, and 13385. The goal was to replace individual receiving water monitoring requirements for dischargers with a comprehensive Regional Monitoring Program.

The Program is guided by a Memorandum of Understanding (MOU) between the Regional Board and SFEI, first approved in 1996 and amended at various times since (see Appendix C of this Charter). Section VIII of the MOU states the roles and responsibilities of the Regional Board and SFEI in the implementation of the Program. Participating dischargers pay fees to the Program to comply with discharge permit requirements. The cost allocation schedule for Participants is described in Appendix B. The RMP provides an open forum for a wide range of Participant Groups and other Interested Parties to discuss contaminant issues, prioritize science needs, and monitor potential impacts of discharges on the Bay.

In support of the overarching goal described above, the following guiding principles define the intentions and expectations of RMP Participants. Implementation of the RMP will:

  • Develop sound scientific information on water quality in the Bay;
  • Prioritize funding decisions through collaborative discussions;
  • Conduct decision-making in a transparent manner that consistently represents the diversity of RMP Participant interests;
  • Utilize external science advisors for guidance and peer review;
  • Maintain and make publicly available the data collected by the Program;
  • Enhance public awareness and support by regularly communicating the status and trends of water quality in the Bay; and
  • Coordinate with other monitoring and scientific studies in the Bay-Delta region to ensure efficiency.
 (554.31 KB)
Trowbridge, P. 2017. Charter: Regional Monitoring Program for Water Quality in San Francisco Bay. SFEI Contribution No. 844. San Francisco Estuary Institute : Richmond, CA.
 (1.68 MB)
Lowe, S.; Ross, J. R. M.; Thompson, B. 2003. CISNet San Pablo Bay Network of Environmental Stress Indicators; Benthic Microfauna. SFEI Contribution No. 299. San Francisco Estuary Institute: Oakland, CA.
 (633.82 KB)
 (639.71 KB)
 (1.66 MB)
 (1.61 MB)
 (11.98 MB)
 (3.34 MB)
 (1.25 MB)
 (6.77 MB)
 (1.23 MB)
 (1.23 MB)
Méndez, M.; Miller, E.; Lin, D.; Vuckovic, D.; Mitch, W. 2023. Concentrations of Select Commonly Used Organic UV Filters in San Francisco Bay Wastewater Effluent. SFEI Contribution No. 1111. San Francisco Estuary Institute.

Ultraviolet (UV) radiation filters are chemicals designed to absorb or reflect harmful solar radiation, and are used in products as diverse as personal care products (e.g., sunscreens, lotions, and cosmetics) and industrial products (e.g., insecticides, plastics, and paints) to mitigate deleterious effects of sunlight and extend product life. Widespread use of UV filters has led to extensive detections in the environment, and have raised concerns about impacts to aquatic ecosystems. In particular, several organic UV filters that are commonly used in sunscreen have been identified as neurotoxins and endocrine disruptors. To help understand the presence of organic UV filters and their potential to pose risks in San Francisco Bay, three of the most commonly used organic UV filters used in sunscreen (avobenzone, octinoxate, oxybenzone) as well as select metabolites were analyzed in municipal wastewater effluent from the six largest publicly-owned treatment works (POTWs) discharging into the Bay. Note that organic UV filters is a broad chemical class, and other constituents within this class were not included in this study.

Only two of the three organic UV filters analyzed were detected in effluent, avobenzone (detected in 70% of samples) and oxybenzone (83%), with median concentrations of 28 and 86 ng/L, and 90th percentile concentrations of 77 and 209 ng/L, respectively. Concentrations of avobenzone and oxybenzone varied widely across facilities, though there were no clear outlier values. The two POTWs utilizing advanced secondary treatment had the lowest concentrations of any facilities, which may indicate increased removal from these processes. Overall, these concentrations were higher than those reported in one other study of wastewater effluent in the US. An increasing body of literature will help to fully understand the occurrence and fate of organic UV filters in wastewater.

 (752.39 KB)
 (1.93 MB)
 (2.54 MB)
 (7.29 MB)
 (1.55 MB)
Davis, J. A.; Lowe, S.; Anderson, B.; Hunt, J.; Thompson, B. 2004. Conceptual Framework and Rationale for the Exposure and Effects Pilot Study. SFEI Contribution No. 317. San Francisco Estuary Institute: Oakland.
 (634.79 KB)
 (3.42 MB) (5.85 MB)
Collins, J. N.; Brewster, E.; Grossinger, R. M. 1999. Conceptual models of freshwater influences on tidal marsh form and function, with an historical perspective. SFEI Contribution No. 327. Department of Environmental Services: City of San Jose, CA. p 237 pp.
Yee, D.; Gilbreath, A. N.; McKee, L. J. .; Davis, J. A. 2019. Conceptual Model to Support PCB Management and Monitoring in the San Leandro Bay Priority Margin Unit - Final Report. SFEI Contribution No. 928. San Francisco Estuary Institute: Richmond, CA.

The goal of RMP PCB special studies over the next few years is to inform the review and possible revision of the PCB TMDL and the reissuance of the Municipal Regional Permit for Stormwater, both of which are tentatively scheduled to occur in 2020. Conceptual model development for a set of four representative priority margin units will provide a foundation for establishing an effective and efficient monitoring plan to track responses to load reductions, and will also help guide planning of management actions. The Emeryville Crescent was the first PMU to be studied in 2015-2016. The San Leandro Bay PMU is second (2016-2018), Steinberger Slough in San Carlos is third (2018), and Richmond Harbor will be fourth (2018-2019).

This document is Phase Three of a report on the conceptual model for San Leandro Bay. A Phase One report (Yee et al. 2017) presented analyses of watershed loading, initial retention, and long-term fate, including results of sediment sampling in 2016. A Phase Two data report (Davis et al. 2017) documented the methods, quality assurance, and all of the results of the 2016 field study. This Phase Three report is the final report that incorporates all of the results of the 2016 field study, and includes additional discussion of the potential influence of contaminated sites in the
watershed, the results of passive sampling by Stanford researchers and a comparative analysis of long-term fate in San Leandro Bay and the Emeryville Crescent, a section on bioaccumulation, and a concluding section with answers to the management questions that were the impetus for the work.

 (12.81 MB)
 (14.6 MB)
 (3.08 MB)
 (17.57 MB)
McKnight, K.; Braud, A.; Dusterhoff, S.; Grenier, L.; Shaw, S.; Lowe, J.; Foley, M.; McKee, L. 2023. Conceptual Understanding of Fine Sediment Transport in San Francisco Bay. SFEI Contribution No. 1114. San Francisco Estuary Institute: Richmond, CA.

Sediment is a lifeblood of San Francisco Bay (Bay). It serves three key functions: (1) create and maintain tidal marshes and mudflats, (2) transport nutrients and contaminants, and (3) reduce impacts from excessive human-derived nutrients in the Bay. Because of these important roles, we need a detailed understanding of sediment processes in the Bay.


This report offers a conceptual understanding of how fine-grained sediment (i.e. silt and finer, henceforth called fine sediment) moves around at different scales within the Bay, now and into the future, to synthesize current knowledge and identify critical knowledge gaps. This information can be used to support Bay sediment management efforts and help prioritize funding for research and monitoring. In particular, this conceptual understanding is designed to inform future San Francisco Bay Regional Monitoring Program (RMP) work under the guidance of the Sediment Workgroup of the RMP for Water Quality in San Francisco Bay, which brings together experts who have worked on many different components of the landscape, including watersheds and tributaries, marshes and mudflats, beaches, and the open Bay. This report describes sediment at two scales: a conceptual understanding of open-Bay sediment processes at the Bay and subembayment scale (Chapter 2); and a conceptual understanding of sediment processes at the baylands scale (Chapter 3). Chapter 4 summarizes the key knowledge gaps and provides recommendations for future studies.

 (46.2 MB)
 (1.42 MB)
 (485.96 KB)
Greenfield, B. K.; Davis, J. A.; Fairey, R.; Ichikawa, G.; Roberts, C.; Crane, D. B.; Petreas, M. 2003. Contaminant Concentrations in Fish from San Francisco Bay, 2000. San Francisco Estuary Institute, Moss Landing Marine Laboratories, Water Pollution Control Laboratories, California Department of Fish and Game, Hazardous Materials Laboratory, Cal/EPA: Oakland, CA.
 (1.68 MB)
 (1.76 MB)
 (15.89 MB)
 (1.42 MB)
 (5.15 MB)
 (4.87 MB) (2.58 MB)
Davis, J. A.; McKinney, M.; Mok, M.; Stoelting, M.; Wainwright, S. E.; May, M. D.; Petreas, M.; Roberts, C.; Taberski, K.; Tjeerdema, R. S.; et al. 1999. Contaminants Concentrations in Fish from San Francisco Bay, 1997. SFEI Contribution No. 35. San Francisco Estuary Institute, Richmond, CA, Moss Landing Marine Laboratories, Moss Landing, CA, Hazardous Materials Laboratory, Cal/EPA, Berkeley, CA, Institute of Marine Sciences, University of California, Santa Cruz, CA, San Francisco Bay Regional Wa: Richmond, CA.
 (485.96 KB)
 (228.17 KB) (409.54 KB) (646.94 KB) (215.98 KB) (32.21 MB)
 (21.25 KB) (44.83 KB) (29.58 KB) (69.35 KB) (6.4 MB) (25.5 MB)
 (29.4 MB) (5.98 MB) (197.15 KB) (124.98 KB) (193.59 KB) (718.39 KB) (221.35 KB)
 (3.88 MB)
 (3.23 MB)
 (5.51 MB)
 (5.01 MB)
Miller, E.; Mendez, M.; Shimabuku, I.; Buzby, N.; Sutton, R. 2020. Contaminants of Emerging Concern in San Francisco Bay: A Strategy for Future Investigations 2020 Update. SFEI Contribution No. 1007. San Francisco Estuary Institute: Richmond, CA.

This 2020 CEC Strategy Update is a brief summary document that describes the addition of recently monitored CECs to the tiered risk-based framework. Reviews of findings relevant to San Francisco Bay are provided, as is a discussion of the role of environmental persistence in classifying CECs within the framework. The Strategy is a living document that guides RMP special studies on CECs, assuring continued focus on the issues of highest priority to protecting the health of the Bay. A key focus of the Strategy is a tiered risk-based framework that guides future monitoring proposals. The Strategy also features a multi-year plan indicating potential future research priorities.

 (1.94 MB)
Sutton, R.; Sedlak, M. 2015. Contaminants of Emerging Concern in San Francisco Bay: A Strategy for Future Investigations. 2015 Update. Contaminants of Emerging Concern in San Francisco Bay: A Strategy for Future Investigations. SFEI Contribution No. 761. San Francisco Estuary Institute: Richmond, CA.

About this Update

The Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) has been investigating contaminants of emerging concern (CECs) since 2001. CECs can be broadly defined as synthetic or naturally occurring chemicals that are not regulated or commonly monitored in the environment but have the potential to enter the environment and cause adverse ecological or human health impacts.

The RMP Emerging Contaminants Workgroup (ECWG), established in 2006, includes representatives from RMP stakeholder groups, regional scientists, and an advisory panel of expert researchers that work together to address the workgroup’s guiding management question – Which CECs have the potential to adversely impact beneficial uses in San Francisco Bay? The overarching goal of the ECWG is to develop cost-effective strategies to identify and monitor CECs to minimize impacts to the Bay.

To this end, the RMP published a CEC Strategy document in 2013 (Sutton et al. 2013). The strategy is a living document that guides RMP special studies on CECs, assuring continued focus on the issues of highest priority to the health of the Bay. A key focus of the strategy is a tiered risk and management action framework that guides future monitoring proposals. The strategy also features a multi-year plan indicating potential future research priorities.

This 2015 CEC strategy update features revised designations of CECs in the tiered risk and management action framework based on monitoring and research conducted since 2013. Brief summaries of relevant RMP findings are provided. In addition, a proposed multi-year plan for future RMP Special Studies on CECs is outlined. A full revision of the CEC strategy is anticipated in 2016. 

 (870.96 KB)
 (3.43 MB)
 (875.49 KB) (345.92 KB)
 (969.56 KB)
 (1.52 MB)
 (8.9 MB)
Collins, J. N.; May, M. 1998. Contamination of Tidal Wetlands. SFEI Contribution No. 228. Richmond CA.
 (188.33 MB) (27.61 MB) (27.49 MB)
Lowe, S.; Pearce, S.; Kauhanen, P.; Collins, J.; Titus, D. 2021. Coyote Creek Watershed Reassessment 2020: 10-Year Reassessment of the Ecological Condition of Streams Applying the California Rapid Assessment Method, Santa Clara County, California. SFEI Contribution No. 1043. San Francisco Estuary Institute: Richmond. CA. p 131.

This report describes the amount and distribution of aquatic resources in the Coyote Creek watershed, Santa Clara County, California, and presents the first reassessment of stream ecosystem conditions using a watershed approach and the California Rapid Assessment Method (CRAM). Field work was conducted in 2020, ten years after the baseline watershed assessment completed in 2010.

 (59.63 MB)
Lowe, S. 2020. Coyote Creek Watershed Reassessment 2020 Ambient Stream Condition Survey Design and Monitoring Plan: A Review of the Original 2010 Survey Design and Development of the 2020 Reassessment Strategy. Pearce, S., Ed.; Titus, D., Tran.. SFEI Contribution No. 1055. San Francisco Estuary Institute: Richmond. CA. p 18.

This technical report describes the ten-year ambient stream condition reassessment survey design and monitoring plan (or strategy) for the Coyote Creek watershed. Because the reassessment employed (and modified) the 2010 sample draw, essential background information about the original 2010 probability-based survey design, sample draw, and field assessment outcomes were provided.

 (1.7 MB)
Collins, J. N. 2007. CRAM Evaluation of Wetland Conditions. SFEI Contribution No. 544. Elk Grove, California. p 15.
 (5.29 MB)
 (716.68 KB)
Lowe, S.; Robinson, A.; Frontiera, P.; Cayce, K.; Collins, J. N. 2014. Creating Landscape Profiles of Aquatic Resource Abundance, Diversity and Condition. SFEI Contribution No. 725. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA. p 21.
 (651.67 KB)
Ridolfi, K.; Hoenicke, R.; Van Velsor, K. 2007. Critical Coastal Areas Program, Phase I Final Report. SFEI Contribution No. 541. San Francisco Estuary Institute.
 (10.77 MB)
Yee, D.; Wong, A.; Hetzel, F. 2018. Current Knowledge and Data Needs for Dioxins in San Francisco Bay. SFEI Contribution No. 926. San Francisco Estuary Institute : Richmond, CA.
 (3.06 MB)
Heberger, M.; Sutton, R.; Buzby, N.; Sun, J.; Lin, D.; Mendez, M.; Hladik, M.; Orlando, J.; Sanders, C.; Furlong, E. 2020. Current-Use Pesticides, Fragrance Ingredients, and Other Emerging Contaminants in San Francisco Bay Margin Sediment and Water. SFEI Contribution No. 934. San Francisco Estuary Institute: Richmond, CA.

The Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) has recently focused attention on better characterization of contaminants in nearshore “margin” areas of San Francisco Bay. The margins of the Lower South Bay are mudflats and shallow regions that receive direct discharges of stormwater and wastewater; as a result, they may have higher levels of urban contaminants than the open Bay. In the summer of 2017, the RMP collected samples of margin
sediment in the South and Lower South Bay for analysis of legacy contaminants. The study described here leveraged that sampling effort by adding monitoring of sediment and water for two additional sets of emerging contaminants: 1) current-use pesticides; and 2) fragrance ingredients including the polycyclic musk galaxolide, as well as a range of other commonly detected emerging contaminants linked to toxicity concerns such as endocrine disruption.

 (2.8 MB)
Palenik, B.; Flegal, R. A. 1999. Cyanobacterial Populations in San Francisco Bay. SFEI Contribution No. 42. San Francisco Estuary Institute: Richmond, CA.
 (39.11 KB)
 (1.18 MB)
Kucera, T.; Breauz, A.; Zielinski, W. 2002. Data Collection Protocol Montioring River Otter (Lutra [=Lontra] canadensis). SFEI Contribution No. 241. CA State University Stanislaus, U.S Forest Service, San Francisco Bay Regional Water Quality Control Board: Oakland, CAStanislaus, CA. p 11.
Siegel, S.; Callaway, J. 2002. Data Collection Protocol Sedimentation- Erosion Tables (SET's). SFEI Contribution No. 244. University of San Francisco, Wetlands and Water Resources: San Francisco, CASan Rafael, CA.