Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 1869 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Yee, D. 2008. Mercury and Methylmercury in North Bay Tidal Marshes. RMP Mercury Coordination Meeting: Oakland,Ca.
 (1.5 MB)
Collins, J. N.; Yee, D.; Davis, J. A. 2002. Mercury and tidal wetland restoration. CalFED Journal . SFEI Contribution No. 339.
Collins, J. N.; Schwarzbach, S. E.; Luoma, S. N.; Yee, D.; Davis, J. A. 2000. Mercury and tidal wetland restoration. In Chapter 6 in Brown, L. (ed.). DRAFT CALFED Whitepaper on: Ecological Processes in Tidal Wetlands of the Sacramento-San Joaquin Estuary and Their Implications for Proposed Restoration Efforts of the Ecosystem Restoration Program.. Chapter 6 in Brown, L. (ed.). DRAFT CALFED Whitepaper on: Ecological Processes in Tidal Wetlands of the Sacramento-San Joaquin Estuary and Their Implications for Proposed Restoration Efforts of the Ecosystem Restoration Program.
 (2.51 MB)
 (640.34 KB)
 (725.12 KB)
 (629.63 KB)
 (1.26 MB)
 (11.13 MB)
Slotton, D. G.; Jones, A. B. 1996. Mercury Effects, Sources, and Control Measures. SFEI Contribution No. 20. San Francisco Estuary Institute: Richmond, CA.
 (89.59 KB)
 (552.37 KB)
 (3.04 MB)
 (11.57 MB)
Greenfield, B. K.; Jahn, A. 2010. Mercury in San Francisco Bay forage fish. San Francisco Estuary Institute: Oakland, Ca.
 (1.08 MB)
 (1.49 MB)
Greenfield, B. K.; Ichikawa, G.; Stephenson, M.; Davis, J. A. 2002. Mercury in Sport Fish from the Delta Region (Task 2A). SFEI Contribution No. 252. San Francisco Estuary Institute / CALFED Final Project Report.: Oakland, CA. p 88 pp.
 (801.36 KB)
 (664.43 KB)
 (2.56 MB)
 (648.55 KB)
 (2.77 MB)
 (1.21 MB)
Flegal, A. R.; Scelfo, G. M.; Sanudo-Wilhelmy, S. A.; Ritson, P. I.; Rivera-Duarte, I.; Smith, G. J.; Gordon, M. R. 1996. Metal contamination in San Francisco Bay waters: Historic perturbations, contemporary concentrations, and future considerations. San Francisco Bay: The Ecosystem(J.T. Rollibaugh, ed.)American Association for the Advancement of Science 173-188 . SFEI Contribution No. 12.
Cohen, A. N.; Weinstein, A. 1998. Methods and Data for Analysis of Potential Distribution and Abundance of Zebra Mussels in California. SFEI Contribution No. 225. A report for CALFED and the California Urban Water Agencies. San Francisco Estuary Institute: Richmond CA.
 (588.97 KB)
Jassby, A. D. 1996. Methods for Analysis of Spatial and Temporal Patterns. SFEI Contribution No. 18. San Francisco Estuary Institute: Richmond, CA.
 (7.14 MB)
Hung, C.; Klasios, N.; Zhu, X.; Sedlak, M.; Sutton, R. 2020. Methods Matter: Methods for Sampling Microplastic and Other Anthropogenic Particles and Their Implications for Monitoring and Ecological Risk Assessment. Integrated Environmental Assessment and Management 16 (6) . SFEI Contribution No. 1014.

To inform mitigation strategies and understand how microplastics affect wildlife, research is focused on understanding the sources, pathways, and occurrence of microplastics in the environment and in wildlife. Microplastics research entails counting and characterizing microplastics in nature, which is a labor‐intensive process, particularly given the range of particle sizes and morphologies present within this diverse class of contaminants. Thus, it is crucial to determine appropriate sampling methods that best capture the types and quantities of microplastics relevant to inform the questions and objectives at hand. It is also critical to follow protocols with strict quality assurance and quality control (QA/QC) measures so that results reflect accurate estimates of microplastic contamination. Here, we assess different sampling procedures and QA/QC strategies to inform best practices for future environmental monitoring and assessments of exposure. We compare microplastic abundance and characteristics in surface‐water samples collected using different methods (i.e., manta and bulk water) at the same sites, as well as duplicate samples for each method taken at the same site and approximate time. Samples were collected from 9 sampling sites within San Francisco Bay, California, USA, using 3 different sampling methods: 1) manta trawl (manta), 2) 1‐L grab (grab), and 3) 10‐L bulk water filtered in situ (pump). Bulk water sampling methods (both grab and pump) captured more microplastics within the smaller size range (<335 μm), most of which were fibers. Manta samples captured a greater diversity of morphologies but underestimated smaller‐sized particles. Inspection of pump samples revealed high numbers of particles from procedural contamination, stressing the need for robust QA/QC, including sampling and analyzing laboratory blanks, field blanks, and duplicates. Choosing the appropriate sampling method, combined with rigorous, standardized QA/QC practices, is essential for the future of microplastics research in marine and freshwater ecosystems.

 (224.76 KB)
 (686 KB)
 (19.67 MB)
Jabusch, T. W.; Tjeerdema, R. S. 2006. Microbial degradation of penoxsulam in flooded rice field soils. Journal of Agricultural and Food Chemistry 54, 5962-5967.
Jabusch, T.; Trowbridge, P. 2018. Microbial Water Quality at Minimally Human-Impacted Reference Beaches in Northern California. SFEI Contribution No. 858. San Francisco Estuary Institute : Richmond, CA.
 (3.87 MB)
Miller, E.; Klasios, N.; Lin, D.; Sedlak, M.; Sutton, R.; Rochman, C. 2020. Microparticles, Microplastics, and PAHs in Bivalves in San Francisco Bay. SFEI Contribution No. 976. San Francisco Estuary Institute: Richmond, CA.

California mussels (Mytilus californianus and hybrid Mytilus galloprovincialis / Mytilus trossulus) and Asian clams (Corbicula fluminea) were collected at multiple sites in San Francisco Bay. Mussels from a reference area with minimal urban influence were also deployed in cages for 90 days at multiple sites within the Bay prior to collection.Mussels from the reference time zero site, Bodega Head, had some of the lowest microparticle levels found in this study, along with resident clams from the San Joaquin and Sacramento Rivers and mussels transplanted to Pinole Point. The highest concentrations of microparticles were in mussels transplanted to Redwood Creek and Coyote Creek. The results of this study and current literature indicate that bivalves may not be good status and trends indicators of microplastic concentrations in the Bay unless the interest is in human health exposure via contaminated bivalve consumption.

 (1.14 MB)
 (9.44 MB) (8.52 MB)
Sutton, R. 2016. Microplastic Contamination in San Francisco Bay - Fact Sheet. 2015, Revised 2016. SFEI Contribution No. 770.
 (4.05 MB)
Sutton, R.; Mason, S. A.; Stanek, S. K.; Willis-Norton, E.; Wren, I. F.; Box, C. 2016. Microplastic contamination in the San Francisco Bay, California, USA. Marine Pollution Bulletin 109 . SFEI Contribution No. 769.

Despite widespread detection of microplastic pollution in marine environments, data describing microplastic abundance in urban estuaries and microplastic discharge via treated municipal wastewater are limited. This study presents information on abundance, distribution, and composition of microplastic at nine sites in San Francisco Bay, California, USA. Also presented are characterizations of microplastic in final effluent from eight wastewater treatment plants, employing varying treatment technologies, that discharge to the Bay. With an average microplastic abundance of 700,000 particles/km2, Bay surface water appears to have higher microplastic levels than other urban waterbodies sampled in North America. Moreover, treated wastewater from facilities that discharge into the Bay contains considerable microplastic contamination. Facilities employing tertiary filtration did not show lower levels of contamination than those using secondary treatment. As textile-derived fibers were more abundant in wastewater, higher levels of fragments in surface water suggest additional pathways of microplastic pollution, such as stormwater runoff.

Sutton, R.; Sedlak, M. 2017. Microplastic Monitoring and Science Strategy for San Francisco Bay. SFEI Contribution No. 798. San Francisco Estuary Institute: Richmond, Calif.
 (17.38 MB)
Mason, S. A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Papazissimos, D.; Rogers, D. L. 2016. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution 218, 1045-1054.

Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States. Averaging all facilities and sampling dates, 0.05 ± 0.024 microparticles were found per liter of effluent. Though a small value on a per liter basis, even minor municipal wastewater treatment facilities process millions of liters of wastewater each day, yielding daily discharges that ranged from ∼50,000 up to nearly 15 million particles. Averaging across the 17 facilities tested, our results indicate that wastewater treatment facilities are releasing over 4 million microparticles per facility per day. Fibers and fragments were found to be the most common type of particle within the effluent; however, some fibers may be derived from non-plastic sources. Considerable inter- and intra-facility variation in discharge concentrations, as well as the relative proportions of particle types, was observed. Statistical analysis suggested facilities serving larger populations discharged more particles. Results did not suggest tertiary filtration treatments were an effective means of reducing discharge. Assuming that fragments and pellets found in the effluent arise from the 'microbeads' found in many cosmetics and personal care products, it is estimated that between 3 and 23 billion (with an average of 13 billion) of these microplastic particles are being released into US waterways every day via municipal wastewater. This estimate can be used to evaluate the contribution of microbeads to microplastic pollution relative to other sources (e.g., plastic litter and debris) and pathways (e.g., stormwater) of discharge.

Klasios, N.; De Frond, H.; Miller, E.; Sedlak, M.; Rochman, C. M. 2021. Microplastics and other anthropogenic particles are prevalent in mussels from San Francisco Bay, and show no correlation with PAHs. Environmental Pollution 271.

Microplastics are an emerging contaminant of high environmental concern due to their widespread distribution and availability to aquatic organisms. Filter-feeding organisms like bivalves have been identified as particularly susceptible to microplastics, and because of this, it has been suggested bivalves could be useful bioindicators of microplastic pollution in ecosystems. We sampled resident mussels and clams from five sites within San Francisco Bay for microplastics and other anthropogenic microparticles. Cages of depurated mussels (denoted transplants) were also deployed at four sites in the Bay for 90 days to investigate temporal uptake of microplastics and microparticles. Because microplastics can sorb PAHs, and thus may act as a source of these chemicals upon ingestion, transplant mussels and resident clams were also analyzed for PAHs. We found anthropogenic microparticles in all samples at all sites, some of which were identified as microplastics. There was no statistical difference between the mean number of microparticles found in resident and transplant species. There were significant site-specific differences among microparticle abundances in the Bay, with the highest abundances observed in the South Bay. No correlation was found between the number of microparticles and the sum concentrations of PAHs, priority PAHs, or any individual PAH, suggesting the chemical concentrations observed reflect broader chemical trends in the Bay rather than direct exposure through microplastic ingestion. The pattern of spatial distribution of microparticles in transplanted mussels matched that of sediment samples from the Bay, suggesting bivalves could be a useful bioindicator of microplastic abundances in sediment, but not surface water.

Moran, K.; Askevold, R. 2022. Microplastics from Tire Particles in San Francisco Bay Factsheet. SFEI Contribution No. 1074. San Francisco Estuary Institute: Richmond, CA.

As we drive our cars, our tires shed tiny particles

When it rains, stormwater runoff carries tire particles—and the toxic chemicals they contain—from city streets and highways to storm drains and fish habitat in creeks and estuaries like San Francisco Bay. Stormwater washes trillions of tire particles into the Bay each year.

How do tires affect wildlife?

A recent study found a highly toxic chemical (“6PPD-quinone”) derived from vehicle tires in Bay Area stormwater at levels that are lethal to coho salmon. New data indicate that steelhead, a salmon species still migrating through the Bay to surrounding watersheds, are also sensitive to this chemical.

 (1.38 MB)
Sedlak, M.; Sutton, R.; Miller, L.; Lin, D. 2019. Microplastic Strategy Update. SFEI Contribution No. 951. San Francisco Estuary Institute: Richmond, CA.

Based on the detection of microplastics in San Francisco Bay surface water and Bay Area wastewater effluent in 2015, the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) convened a Microplastic Workgroup (MPWG) in 2016 to discuss the issue, identify management information needs and management questions (MQs), and prioritize studies to provide information to answer these management questions. The MPWG meets annually to review on-going microplastic projects and to conduct strategic long-term planning in response to new information in this rapidly evolving field.


In this nascent field with new findings published almost daily, the Strategy is designed to be a living document that is updated periodically. This Strategy Update includes a short summary of recent findings from the San Francisco Bay Microplastics Project - a major monitoring effort in the Bay - and an updated multi-year plan based on the newly acquired knowledge and current management needs.

 (1.9 MB)
Safran, S. M.; Clark, E.; Beller, E. E.; Grossinger, R. M. 2016. Mission Bay Historical Ecology Reconnaissance Study: Data Collection Summary (Technical Report). SFEI Contribution No. 777.

The goals of the Mission Bay Historical Ecology Reconnaissance Study were to collect and compile high-priority historical
data about the Mission Bay landscape, identify sources that could help to develop a deeper understanding of early
ecological conditions, and to identify future possible research directions based on the available data. This technical
memorandum is intended to document the archives consulted during the reconnaissance study, summarize the collected
and compiled data, and to identify potential next steps. A separate technical presentation to project staff and advisors will
summarize the preliminary findings and questions generated from a review of the historical dataset. Ultimately, this
research is intended to support the San Diego Audubon Society’s Mission Bay Wetlands Conceptual Restoration Plan (CRP)
and the ReWild Mission Bay project.

 (3.44 MB)
 (47.38 MB)
 (4.31 KB)
Cohen, A. N. 2003. On Mitten Crabs and Lung Flukes. In IEP Newsletter. IEP Newsletter. Vol. 16, pp 48-51.
 (218.86 KB)
 (558.43 KB)
 (1.54 MB)
 (9.5 MB)
Avellaneda, P. M.; Zi, T. 2024. Modeling Stormwater Loads of Contaminants of Emerging Concern: Literature Review and Recommendations. SFEI Contribution No. 1131. San Francisco Estuary Institute: Richmond, CA.
 (468.55 KB)
 (3.82 MB)
 (3.31 MB)
 (2.79 MB)
Cohen, A. N. 1998. Monitoring for Non-indigenous Organisms. SFEI Contribution No. 385. San Francisco Estuary Institute: Oakland, CA.
 (100.5 KB)
 (1.56 MB)
 (1.49 MB)
 (2.93 MB)
 (12.94 MB)
 (1.09 MB)
 (2.13 MB)
 (3.35 MB)
 (548.57 KB)
 (119.38 KB)
 (1.8 MB)
 (2.78 MB)
 (2.18 MB)
 (24.56 KB)
 (17.16 KB)
 (64.83 KB)
 (4.48 KB)
 (14.58 KB)
 (8.69 KB)
Lowe, S. 2017. MS4 2009 Permit Monitoring Results (2010-2015) Summary of Sonoma County Water Agency’s Data for two Sites in Santa Rosa Creek. SFEI Contribution No. 832. San Francisco Estuary Institute: Richmond. CA. p 35.

This memo summarizes the Sonoma County Water Agency's  2009 receiving water monthly monitoring results for the North Coast Regional Water Quality Control Board's NPDES Permit No. R1-2009-0050.  The data were compiled, formatted and uploaded to SFEI’s Regional Data Center and are availble through CEDEN (https://ceden.waterboards.ca.gov/AdvancedQueryTool) under the Program Name "Russian River MS4 Program" and Project Names "2009 5 year Permit for RR_MS4 Program SCWA" and "2009 5 year Permit for RR_MS4 Program CSR".  The memo summarizes field measures and water chemistry, bacteria, and toxiciity results from two receving waters sites in Santa Rosa Creek downstream (C1-SRC-D) and upstream of the City of Santa Rosa.  

This memo was funded by a Suplemental Environmental Project (SEP) settlement of an enforcement action by the North Coast Regional Water Quality Control Board against the County of Sonoma.  2016.

 (1.43 MB)
Baumgarten, S.; Beller, E. E.; Grossinger, R. M.; Askevold, R. A. 2015. Mt. Wanda Historical Ecology Investigation. SFEI Contribution No. 743. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA. p 51.
 (20.92 MB) (57.9 MB)
 (2.01 MB)
Soberón, F. Sánchez; Sutton, R.; Sedlak, M.; Yee, D.; Schuhmacher, M.; Park, J. - S. 2020. Multi-box mass balance model of PFOA and PFOS in different regions of San Francisco Bay. Chemosphere 252 . SFEI Contribution No. 986.

We present a model to predict the long-term distribution and concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in estuaries comprising multiple intercommunicated sub-embayments. To that end, a mass balance model including rate constants and time-varying water inputs was designed to calculate levels of these compounds in water and sediment for every sub-embayment. Subsequently, outflows and tidal water exchanges were used to interconnect the different regions of the estuary. To calculate plausible risks to population, outputs of the model were used as inputs in a previously designed model to simulate concentrations of PFOA and PFOS in a sport fish species (Cymatogaster aggregata). The performance of the model was evaluated by applying it to the specific case of San Francisco Bay, (California, USA), using 2009 sediment and water sampled concentrations of PFOA and PFOS in North, Central and South regions. Concentrations of these compounds in the Bay displayed exponential decreasing trends, but with different shapes depending on region, compound, and compartment assessed. Nearly stable PFOA concentrations were reached after 50 years, while PFOS needed close to 500 years to stabilize in sediment and fish. Afterwards, concentrations stabilize between 4 and 23 pg/g in sediment, between 0.02 and 44 pg/L in water, and between 7 and 104 pg/g wet weight in fish, depending on compound and region. South Bay had the greatest final concentrations of pollutants, regardless of compartment. Fish consumption is safe for most scenarios, but due to model uncertainty, limitations in monthly intake could be established for North and South Bay catches.

Foley, M.; Davis, J.; Yee, D. 2023. Multi-Year Plan 2023. SFEI Contribution No. 1096. San Francisco Estuary Institute: Richmond, California.

The purpose of this document is to guide efforts and summarize plans developed within the RMP. The intended audience includes representatives of the many organizations who directly participate in the Program. This document will also be useful for individuals who are not directly involved with the RMP but are interested in an overview of the Program and where it is heading.  

The organization of this Multi-Year Plan parallels the RMP planning process (Figure 2). Section 1 presents the long-term management plans of the agencies responsible for managing water quality in the Bay and the overarching management questions that guide the Program. The agencies’ long-term management plans provide the foundation for RMP planning (Figure 2). In order to turn the plans into effective actions, the RMP distills prioritized lists of management questions that need to be answered (Page 8). The prioritized management questions then serve as a roadmap for scientists on the Technical Review Committee, workgroups, and strategy teams to plan and implement scientific studies to address the most urgent information needs. This information sharpens the focus on management actions that will most effectively and efficiently improve water quality in the Bay. 

 (3.61 MB)
Kleckner, A.; Davis, J. 2024. Multi Year Plan 2024. SFEI Contribution No. 1167. San Francisco Estuary Institute: Richmond, CA.

The purpose of this document is to guide efforts and summarize plans developed within the RMP. The intended audience includes representatives of the many organizations who directly participate in the Program. This document will also be useful for individuals who are not directly involved with the RMP but are interested in an overview of the Program and where it is heading.


The organization of this Multi-Year Plan parallels the RMP planning process (Figure 2). Section 1 presents the long-term management plans of the agencies responsible for managing water quality in the Bay and the overarching management questions that guide the Program. The agencies’ long-term management plans provide the foundation for RMP planning (Figure 2). In order to turn the plans into effective actions, the RMP distills prioritized lists of management questions that need to be answered (Page 8). The prioritized management questions then serve as a roadmap for scientists on the Technical Review Committee, workgroups, and strategy teams to plan and implement scientific studies to address the most urgent information needs. This information sharpens the focus on management actions that will most effectively and efficiently

 (3.3 MB)
Gilbreath, A.; McKee, L.; Shimabuku, I.; Lin, D.; Werbowski, L. M.; Zhu, X.; Grbic, J.; Rochman, C. 2019. Multi-year water quality performance and mass accumulation of PCBs, mercury, methylmercury, copper and microplastics in a bioretention rain garden. Journal of Sustainable Water in the Built Environment 5 (4) . SFEI Contribution No. 872.

A multiyear water quality performance study of a bioretention rain garden located along a major urban transit corridor east of San Francisco Bay was conducted to assess the efficacy of bioretention rain gardens to remove pollutants. Based on data collected in three years between 2012 and 2017, polychlorinated biphenyls (PCBs) and suspended sediment concentrations (SSCs) were reduced (>90%), whereas total mercury (Hg), methylmercury (MeHg), and copper (Cu) were moderately captured (37%, 49%, and 68% concentration reduction, respectively). Anthropogenic microparticles including microplastics were retained by the bioretention rain garden, decreasing in concentration from 1.6 particles/L to 0.16 particles/L. Based on subsampling at 50- and 150-mm intervals in soil cores from two areas of the unit, PCBs, Hg, and MeHg were all present at the highest concentrations in the upper 100 mm in the surface media layers. Based on residential screening concentrations, the surface media layer near the inlet would need to be removed and replaced annually, whereas the rest of the unit would need replacement every 8 years. The results of this study support the use of bioretention in the San Francisco Bay Area as one management option for meeting load reductions required by San Francisco Bay total maximum daily loads, and provide useful data for supporting decisions about media replacement and overall maintenance schedules.

 (627.7 KB) (4.92 MB)
 (6.14 MB)
 (6.14 MB)
 (154.89 KB)