Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 1 results:
Filters: Author is Heim, Wesley A.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Davis, J. A.; Heim, W. A.; Bonnema, A.; Jakl, B.; Yee, D. 2018. Mercury and Methylmercury in Fish and Water from the Sacramento-San Joaquin Delta: August 2016 – April 2017. SFEI Contribution No. 908. Aquatic Science Center: Richmond, CA.

Monitoring of sport fish and water was conducted by the Delta Regional Monitoring Program (Delta RMP) from August 2016 to April 2017 to begin to address the highest priority information needs related to implementation of the Sacramento–San Joaquin Delta Estuary Total Maximum Daily Load (TMDL) for Methylmercury (Wood et al. 2010). Two species of sport fish, largemouth bass (Micropterus salmoides) and spotted bass (Micropterus punctulatus), were collected at six sampling locations in August and September 2016. The length-adjusted (350 mm) mean methylmercury (measured as total mercury, which is a routinely used proxy for methylmercury in predator fish) concentration in bass ranged from 0.15 mg/kg or parts per million (ppm) wet weight at Little Potato Slough to 0.61 ppm at the Sacramento River at Freeport. Water samples were collected on four occasions from August 2016 through April 2017. Concentrations of methylmercury in unfiltered water ranged from 0.021 to 0.22 ng/L or parts per trillion. Concentrations of total mercury in unfiltered water ranged from 0.91 to 13 ng/L.

Over 99% of the lab results for this project met the requirements of the Delta RMP Quality Assurance Program Plan, and all data were reportable. This data report presents the methods and results for the first year of monitoring. Historic data from the same or nearby monitoring stations from 1998 to 2011 are also presented to provide context. Monitoring results for both sport fish and water were generally comparable to historic observations.

For the next several years, annual monitoring of sport fish will be conducted to firmly establish baseline concentrations and interannual variation in support of monitoring of long-term trends as an essential performance measure for the TMDL. Monitoring of water will solidify the linkage analysis (the quantitative relationship between methylmercury in water and methylmercury in sport fish) in the TMDL. Water monitoring will also provide data that will be useful in verifying patterns and trends predicted by numerical models of mercury transport and cycling being developed for the Delta and Yolo Bypass by the California Department of Water Resources (DWR).

 (4.09 MB)