Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 2 results:
Filters: Author is P. Lee Ferguson  [Clear All Filters]
Report
Lindborg, A. R.; Overdahl, K. E.; Vogler, B.; Lin, D.; Sutton, R.; P. Ferguson, L. 2023. Assessment of Long-Chain Polyethoxylate Surfactants in Wastewater Effluent, Stormwater Runoff, and Ambient Water of San Francisco Bay, CA. SFEI Contribution No. 1126. American Chemical Society.

Ethoxylated surfactants are ubiquitous organic environmental contaminants that have received continued attention over the past several decades, particularly as manufacturing rates increase worldwide and as toxicity concerns grow regarding alcohol ethoxylates. Presence of these compounds in surface water has been considered primarily the result of contaminated wastewater effluent by ethoxylated surfactant degradates; as a result, monitoring has focused on the small subset of short-chain ethoxylates in wastewater effluent and receiving waters. This study quantified long-chain alcohol and alkylphenol ethoxylated surfactants in San Francisco Bay area stormwater runoff, wastewater effluent, and ambient Bay water to determine concentrations and inform potential pathways of contamination. We employed high-performance liquid chromatography coupled to high-resolution mass spectrometry to quantitate long-chain polyethoxylates, which are rarely monitored in ethoxylated surfactant studies. Similar total ethoxylated surfactant concentrations were observed in stormwater runoff (0.004–4.7 μg/L) and wastewater effluent (0.003–4.8 μg/L, outlier of 45 μg/L). Ambient Bay water contamination (0.0001–0.71 μg/L) was likely the result of both stormwater and wastewater inputs to San Francisco Bay. These results suggest that a broader focus including long-chain compounds and stormwater pathways may be needed to fully characterize the occurrence and impacts of ethoxylated surfactants in urban surface waters.

Overdahl, K. E.; Sutton, R.; Sun, J.; DeStefano, N. J.; Getzinger, G. J.; P. Ferguson, L. 2021. Assessment of emerging polar organic pollutants linked to contaminant pathways within an urban estuary using non-targeted analysis. SFEI Contribution No. 1107. Environmental Sciences: Processes and Impacts.

A comprehensive, non-targeted analysis of polar organic pollutants using high resolution/accurate mass (HR/AM) mass spectrometry approaches has been applied to water samples from San Francisco (SF) Bay, a major urban estuary on the western coast of the United States, to assess occurrence of emerging contaminants and inform future monitoring and management activities. Polar Organic Chemical Integrative Samplers (POCIS) were deployed selectively to evaluate the influence of three contaminant pathways: urban stormwater runoff (San Leandro Bay), wastewater effluent (Coyote Creek, Lower South Bay), and agricultural runoff (Napa River). Grab samples were collected before and after deployment of the passive samplers to provide a quantitative snapshot of contaminants for comparison. Composite samples of wastewater effluent (24 hours) were also collected from several wastewater dischargers. Samples were analyzed using liquid-chromatography coupled to high resolution mass spectrometry. Resulting data were analyzed using a customized workflow designed for high-fidelity detection, prioritization, identification, and semi-quantitation of detected molecular features. Approximately 6350 compounds were detected in the combined data set, with 424 of those compounds tentatively identified through high quality spectral library match scores. Compounds identified included ethoxylated surfactants, pesticide and pharmaceutical transformation products, polymer additives, and rubber vulcanization agents. Compounds identified in samples were reflective of the apparent sources and pathways of organic pollutant inputs, with stormwater-influenced samples dominated by additive chemicals likely derived from plastics and vehicle tires, as well as ethoxylated surfactants.