Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 7 results:
Filters: Author is Katie McKnight  [Clear All Filters]
2019
Beagle, J.; Lowe, J.; McKnight, K.; Safran, S. M.; Tam, L.; Szambelan, S. Jo. 2019. San Francisco Bay Shoreline Adaptation Atlas: Working with Nature to Plan for Sea Level Rise Using Operational Landscape Units. SFEI Contribution No. 915. SFEI & SPUR: Richmond, CA. p 255.

As the climate continues to change, San Francisco Bay shoreline communities will need to adapt in order to build social and ecological resilience to rising sea levels. Given the complex and varied nature of the Bay shore, a science-based framework is essential to identify effective adaptation strategies that are appropriate for their particular settings and that take advantage of natural processes. This report proposes such a framework—Operational Landscape Units for San Francisco Bay.

Printed copies available for purchase from Amazon.

 (259.64 MB) (84.6 MB) (20.93 MB)
2018
McKnight, K.; Dusterhoff, S. D.; Grossinger, R. M.; Askevold, R. A. 2018. Resilient Landscape Vision for the Calabazas Creek, San Tomas Aquino Creek, and Pond A8 Area: Bayland-Creek Reconnection Opportunities. SFEI Contribution No. 870. San Francisco Estuary Institute-Aquatic Science Center: Richmond, CA. p 40.

This report proposes a multi-faceted redesign of the South San Francisco Bay shoreline at the interface with Calabazas and San Tomas Aquino creeks. Recognizing the opportunities presented by changing land use and new challenges, such as accelerated sea-level rise, we explore in this report a reconfigured shoreline that could improve ecosystem health and resilience, reduce maintenance costs, and protect surrounding infrastructure.

 (68.63 MB) (20.14 MB)
Richey, A.; Dusterhoff, S. D.; McKnight, K.; Salomon, M.; Hagerty, S.; Askevold, R. A.; Grossinger, R. M. 2018. Resilient Landscape Vision for Upper Penitencia Creek. SFEI Contribution No. 894. San Francisco Estuary Institute - Aquatic Science Center: Richmond, CA.
 (67.6 MB) (11.75 MB)
2017
Dusterhoff, S.; Pearce, S.; McKee, L. J. .; Doehring, C.; Beagle, J.; McKnight, K.; Grossinger, R.; Askevold, R. A. 2017. Changing Channels: Regional Information for Developing Multi-benefit Flood Control Channels at the Bay Interface. Flood Control 2.0. SFEI Contribution No. 801. San Francisco Estuary Institute: Richmond, CA.

Over the past 200 years, many of the channels that drain to San Francisco Bay have been modified for land reclamation and flood management. The local agencies that oversee these channels are seeking new management approaches that provide multiple benefits and promote landscape resilience. This includes channel redesign to improve natural sediment transport to downstream bayland habitats and beneficial re-use of dredged sediment for building and sustaining baylands as sea level continues to rise under a changing climate. Flood Control 2.0 is a regional project that was created to help develop innovative approaches for integrating habitat improvement and resilience into flood risk management at the Bay interface. Through a series of technical, economic, and regulatory analyses, the project addresses some of the major elements associated with multi-benefit channel design and management at the Bay interface and provides critical information that can be used by the management and restoration communities to develop long-term solutions that benefit people and wildlife.

This Flood Control 2.0 report provides a regional analysis of morphologic change and sediment dynamics in flood control channels at the Bay interface, and multi-benefit management concepts aimed at bringing habitat restoration into flood risk management. The findings presented here are built on a synthesis of historical and contemporary data that included input from Flood Control 2.0 project scientists, project partners, and science advisors. The results and recommendations, summarized below, will help operationalize many of the recommendations put forth in the Baylands Ecosystem Habitat Goals Science Update (Goals Project 2015) and support better alignment of management and restoration communities on multi-benefit bayland management approaches.

 (62.69 MB) (23.02 MB)
Robinson, A.; Beagle, J.; Safran, S. M.; McKnight, K.; Grenier, J. Letitia; Askevold, R. A. 2017. Delta Landscapes: A Delta Renewed User Guide. SFEI Contribution No. 854.

A Delta Renewed User Guide aims to increase the accessibility of the technical findings in A Delta Renewed for easier application to restoration and conservation efforts across the Delta. The recommendations in A Delta Renewed focus on landscape-scale ecological guidance. We present three examples of how the information in A Delta Renewed might be used to address different management and restoration questions. Because of the complexity of the Delta system, this guide does not address all possible questions and does not replace the need for detailed, site-specific data and expertise. Rather, it shows how the information in A Delta Renewed might provide a common foundation for restoration planning.

The User Guide was written for a broad audience, including restoration practitioners, landowners, and local, state and federal agencies. The guide provides a step-by-step path through A Delta Renewed; a user is walked through how to apply the findings of the report via a series of steps to address each of the three restoration and management questions. This process is intended to help the user access regionally-specific recommendations and strategies to plan and manage future Delta landscapes that can support desired ecological functions over the long term.


The goal of A Delta Renewed and this guide is not to recreate the Delta of the past. Rather, the objective is to understand how we can re-establish or mimic important natural processes and patterns within this altered system to support desirable ecological functions (such as healthy native fish populations, a productive food web, and support for endangered species), now and into the future.

 (28.86 MB)
 (23.99 MB)
 (13.8 MB)